Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 47 x^{2} )( 1 + 10 x + 47 x^{2} )$ |
| $1 + 12 x + 114 x^{2} + 564 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.546596511845$, $\pm0.760165737085$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $64$ |
| Isomorphism classes: | 272 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2900$ | $5069200$ | $10708519700$ | $23814696064000$ | $52598144179284500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $2294$ | $103140$ | $4880382$ | $229340700$ | $10779387446$ | $506622662340$ | $23811273421438$ | $1119130596655740$ | $52599132140769014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=3 x^6+37 x^5+36 x^4+15 x^3+12 x^2+20 x+39$
- $y^2=40 x^6+17 x^5+16 x^4+13 x^3+4 x^2+4 x+30$
- $y^2=7 x^6+17 x^5+29 x^4+22 x^3+19 x^2+41 x+22$
- $y^2=28 x^6+38 x^5+33 x^4+19 x^3+33 x^2+38 x+28$
- $y^2=34 x^6+31 x^5+37 x^4+38 x^3+4 x^2+7 x+37$
- $y^2=35 x^6+43 x^5+6 x^4+3 x^3+7 x^2+17 x+10$
- $y^2=18 x^6+38 x^5+20 x^4+42 x^3+13 x^2+13 x+16$
- $y^2=32 x^6+22 x^5+33 x^4+28 x^3+2 x^2+28 x+18$
- $y^2=20 x^6+7 x^4+28 x^3+30 x^2+45$
- $y^2=45 x^6+21 x^5+45 x^4+23 x^3+18 x^2+18 x+6$
- $y^2=41 x^6+23 x^5+37 x^4+40 x^3+29 x^2+26 x+26$
- $y^2=30 x^6+29 x^5+5 x^4+44 x^3+27 x^2+21 x+25$
- $y^2=5 x^6+12 x^5+2 x^4+35 x^3+41 x^2+10 x+27$
- $y^2=36 x^6+39 x^5+23 x^4+23 x^3+33 x^2+26 x+14$
- $y^2=27 x^6+23 x^5+32 x^4+7 x^3+32 x^2+23 x+27$
- $y^2=17 x^6+10 x^5+25 x^4+27 x^3+16 x^2+17 x+25$
- $y^2=39 x^6+35 x^5+39 x^4+13 x^3+39 x^2+35 x+39$
- $y^2=25 x^6+42 x^5+10 x^4+19 x^3+30 x^2+24 x+39$
- $y^2=12 x^6+x^5+13 x^4+40 x^3+15 x^2+41 x+34$
- $y^2=x^6+14 x^5+24 x^4+39 x^3+30 x^2+39 x+11$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.c $\times$ 1.47.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.am_ek | $2$ | (not in LMFDB) |
| 2.47.ai_cw | $2$ | (not in LMFDB) |
| 2.47.i_cw | $2$ | (not in LMFDB) |