Invariants
| Base field: | F31 |
| Dimension: | 2 |
| L-polynomial: | (1−4x+31x2)(1+2x+31x2) |
| 1−2x+54x2−62x3+961x4 |
| Frobenius angles: | ±0.383045975359, ±0.557482058976 |
| Angle rank: | 2 (numerical) |
| Jacobians: | 92 |
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| r |
1 |
2 |
3 |
4 |
5 |
| A(Fqr) |
952 |
1028160 |
891381400 |
851382282240 |
819573232266712 |
Point counts of the curve
| r |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
| C(Fqr) |
30 |
1066 |
29922 |
921886 |
28627230 |
887496298 |
27512476770 |
852892614526 |
26439634120542 |
819628224318826 |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 92 curves (of which all are hyperelliptic):
- y2=2x6+13x5+13x4+29x3+8x2+14x+4
- y2=x6+11x5+21x4+28x3+26x2+26x+4
- y2=12x6+9x5+9x4+9x3+30x2+6x+1
- y2=5x6+19x5+6x4+25x3+15x2+13x+10
- y2=25x6+17x5+12x4+19x3+24x2+30x+15
- y2=27x6+18x4+8x3+6x2+5x
- y2=2x6+6x5+23x4+22x3+25x2+5x+2
- y2=15x6+18x5+14x4+7x3+14x2+18x+15
- y2=25x6+10x5+14x4+9x3+7x2+12x+13
- y2=24x6+11x5+x3+22x2+24x+29
- y2=15x6+24x5+2x4+12x3+25x2+6x+29
- y2=14x6+25x5+30x4+8x3+12x2+20x
- y2=7x6+6x5+2x4+5x3+21x2+20x+16
- y2=29x6+21x4+28x3+3x2+21x+15
- y2=7x6+9x5+2x4+25x3+25x2+30x+14
- y2=23x6+25x5+21x4+8x3+17x2+17x+30
- y2=17x6+25x5+21x4+x3+21x2+25x+17
- y2=19x6+4x5+14x4+26x3+17x2+4x+4
- y2=2x6+10x5+4x4+8x3+18x2+x+4
- y2=21x6+16x5+30x4+4x3+10x2+29x+20
- and 72 more
- y2=15x6+28x5+24x4+26x3+29x2+25x+12
- y2=28x6+28x5+20x4+22x3+23x2+5x
- y2=11x6+24x5+15x4+17x3+6x2+18x+20
- y2=12x6+13x5+8x4+20x3+4x2+26x+2
- y2=12x6+21x5+18x2+5x+10
- y2=15x6+23x5+3x4+22x3+10x2+26x+28
- y2=3x6+28x5+7x4+15x3+5x2+11x+19
- y2=6x6+9x5+23x4+18x3+21x2+19x+17
- y2=2x6+13x5+2x4+19x3+30x2+5x+16
- y2=5x6+19x5+15x4+26x3+26x2+29x+17
- y2=21x6+20x5+12x4+29x3+10x2+15
- y2=23x6+16x5+30x4+2x3+15x2+8x+16
- y2=7x6+3x5+6x4+17x3+6x2+3x+7
- y2=28x6+2x5+16x4+14x3+16x2+2x+28
- y2=8x6+29x5+18x4+20x3+18x2+29x+8
- y2=22x6+13x5+3x4+29x3+8x2+1
- y2=8x6+29x5+8x4+8x3+4x2+15x+1
- y2=10x6+12x5+28x4+6x3+4x2+9x+2
- y2=30x6+7x5+20x4+16x3+9x2+28x+23
- y2=11x6+10x5+28x4+19x3+17x2+26x+21
- y2=5x6+7x5+5x4+24x3+5x2+7x+5
- y2=27x6+2x5+11x4+27x3+15x2+30x+21
- y2=22x6+7x5+x4+26x3+x2+7x+22
- y2=29x6+24x5+2x4+12x3+29x2+18x+21
- y2=20x6+18x5+22x4+28x3+29x2+24x+30
- y2=3x6+16x5+24x4+29x3+3x2+21x+12
- y2=7x6+20x5+6x4+10x3+13x2+25x+28
- y2=24x6+18x5+12x4+23x3+13x2+4x+1
- y2=21x6+6x5+3x4+20x3+17x2+10x+15
- y2=23x5+12x4+2x3+6x2+29x
- y2=6x6+28x5+25x4+25x3+7x2+9x+24
- y2=30x6+18x5+25x4+13x3+25x2+18x+30
- y2=14x5+9x4+15x3+5x2+7x
- y2=12x6+3x5+22x4+14x3+26x2+23
- y2=22x6+17x5+21x4+14x3+3x2+16x
- y2=6x6+6x5+21x4+9x3+15x2+29x+3
- y2=13x6+24x5+26x4+26x3+12x2+13x+11
- y2=3x6+11x5+27x3+12x2+9x+23
- y2=22x6+14x5+14x4+4x3+9x2+8x+22
- y2=2x6+26x5+18x4+25x3+24x2+6x+7
- y2=27x6+13x5+6x4+20x3+27x2+23x+23
- y2=17x6+x5+29x4+22x3+9x2+28x+26
- y2=30x6+5x5+5x4+24x3+7x2+11x+28
- y2=3x6+15x5+4x4+24x3+20x2+3x+29
- y2=20x6+26x5+17x4+20x3+17x2+26x+20
- y2=15x6+15x5+15x3+15x+15
- y2=20x6+3x5+23x4+17x3+4x2+29x+22
- y2=18x6+7x5+27x4+19x3+20x2+27x+13
- y2=14x6+23x5+23x4+30x3+10x2+10x+28
- y2=4x6+28x5+23x4+23x3+23x2+28x+4
- y2=22x6+29x5+18x4+9x3+10x2+18x+6
- y2=16x6+7x5+24x4+2x3+24x2+7x+16
- y2=4x6+5x5+15x4+16x3+5x2+17x+26
- y2=6x6+30x5+28x4+20x3+28x2+30x+6
- y2=11x6+12x5+29x4+11x3+14x2+8x+18
- y2=12x6+22x5+14x4+6x3+10x2+28x+3
- y2=22x6+15x5+7x4+7x3+7x2+15x+22
- y2=7x6+26x5+9x4+16x3+9x2+26x+7
- y2=20x6+26x5+16x4+6x3+16x2+26x+20
- y2=24x6+17x5+22x4+9x3+12x2+13x+12
- y2=4x6+8x5+4x4+5x3+30x2+8x+12
- y2=29x6+22x5+22x4+15x3+8x2+23x+1
- y2=9x6+26x5+29x4+30x3+29x2+26x+9
- y2=22x6+x5+6x4+11x3+25x2+24x+25
- y2=12x6+14x5+15x4+4x3+26x2+5x+3
- y2=30x6+18x5+11x4+27x3+24x2+15x+26
- y2=29x6+27x5+10x4+29x3+5x2+x+7
- y2=8x6+4x5+30x4+4x3+30x2+4x+8
- y2=26x6+26x5+26x4+9x3+19x2+13x+6
- y2=27x6+11x5+19x4+25x3+9x2+12x+23
- y2=5x6+17x5+12x4+4x3+4x+1
- y2=12x5+26x4+8x3+27x2+21x+9
All geometric endomorphisms are defined over F31.
Endomorphism algebra over F31
| The isogeny class factors as 1.31.ae × 1.31.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists