Properties

Label 2-96330-1.1-c1-0-26
Degree $2$
Conductor $96330$
Sign $-1$
Analytic cond. $769.198$
Root an. cond. $27.7344$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 4·7-s + 8-s + 9-s − 10-s − 4·11-s − 12-s − 4·14-s + 15-s + 16-s − 2·17-s + 18-s + 19-s − 20-s + 4·21-s − 4·22-s − 4·23-s − 24-s + 25-s − 27-s − 4·28-s + 2·29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s − 0.288·12-s − 1.06·14-s + 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.872·21-s − 0.852·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.755·28-s + 0.371·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96330\)    =    \(2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(769.198\)
Root analytic conductor: \(27.7344\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 96330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84830446436044, −13.31735337879536, −13.17838809415503, −12.56650428144053, −12.16556762110053, −11.71691517480544, −11.22787964987157, −10.50366971464385, −10.24120301390407, −9.805493872348536, −9.183110753185695, −8.394101783298146, −7.966104109422866, −7.301434669214126, −6.877225047021718, −6.251743863326084, −5.975158390192316, −5.379623498226549, −4.588953672516228, −4.384219545174290, −3.541402359249953, −2.972532208562439, −2.638879347494970, −1.717152569043016, −0.6569558859031617, 0, 0.6569558859031617, 1.717152569043016, 2.638879347494970, 2.972532208562439, 3.541402359249953, 4.384219545174290, 4.588953672516228, 5.379623498226549, 5.975158390192316, 6.251743863326084, 6.877225047021718, 7.301434669214126, 7.966104109422866, 8.394101783298146, 9.183110753185695, 9.805493872348536, 10.24120301390407, 10.50366971464385, 11.22787964987157, 11.71691517480544, 12.16556762110053, 12.56650428144053, 13.17838809415503, 13.31735337879536, 13.84830446436044

Graph of the $Z$-function along the critical line