Properties

Label 2-95550-1.1-c1-0-141
Degree $2$
Conductor $95550$
Sign $-1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s + 13-s + 16-s − 3·17-s − 18-s − 19-s + 22-s + 23-s + 24-s − 26-s − 27-s + 5·29-s + 6·31-s − 32-s + 33-s + 3·34-s + 36-s + 37-s + 38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.229·19-s + 0.213·22-s + 0.208·23-s + 0.204·24-s − 0.196·26-s − 0.192·27-s + 0.928·29-s + 1.07·31-s − 0.176·32-s + 0.174·33-s + 0.514·34-s + 1/6·36-s + 0.164·37-s + 0.162·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02506330444746, −13.35751396965511, −13.18665870583590, −12.39067938621057, −11.94907854721279, −11.64710327742717, −10.83746561583405, −10.73671483941863, −10.11584893537224, −9.703010842008325, −8.947158133409150, −8.696736211674818, −8.006644702219873, −7.612177995363603, −6.872317040510163, −6.512695081352070, −6.065231237007947, −5.367954823993558, −4.811081331952692, −4.252284870581360, −3.568101738772242, −2.734983436124995, −2.303861848963267, −1.416292007408473, −0.8076542459699346, 0, 0.8076542459699346, 1.416292007408473, 2.303861848963267, 2.734983436124995, 3.568101738772242, 4.252284870581360, 4.811081331952692, 5.367954823993558, 6.065231237007947, 6.512695081352070, 6.872317040510163, 7.612177995363603, 8.006644702219873, 8.696736211674818, 8.947158133409150, 9.703010842008325, 10.11584893537224, 10.73671483941863, 10.83746561583405, 11.64710327742717, 11.94907854721279, 12.39067938621057, 13.18665870583590, 13.35751396965511, 14.02506330444746

Graph of the $Z$-function along the critical line