Properties

Label 2-95550-1.1-c1-0-134
Degree $2$
Conductor $95550$
Sign $-1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s + 13-s + 16-s + 3·17-s − 18-s − 7·19-s + 22-s + 4·23-s + 24-s − 26-s − 27-s + 2·29-s + 3·31-s − 32-s + 33-s − 3·34-s + 36-s − 2·37-s + 7·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 1.60·19-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 0.196·26-s − 0.192·27-s + 0.371·29-s + 0.538·31-s − 0.176·32-s + 0.174·33-s − 0.514·34-s + 1/6·36-s − 0.328·37-s + 1.13·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31051793253173, −13.32883331131997, −12.97702813256050, −12.57143591236291, −12.02008575113010, −11.38921205774272, −11.15661991359324, −10.49340053364289, −10.15460874029904, −9.762576622392214, −8.940050778462383, −8.634749035406994, −8.083267697695306, −7.541482561964946, −6.974119418917588, −6.405245956911110, −6.100569167265777, −5.351657969805176, −4.865327517281081, −4.215200486355545, −3.534429220033395, −2.845724361361119, −2.196573157217473, −1.462916921877241, −0.7935327214271474, 0, 0.7935327214271474, 1.462916921877241, 2.196573157217473, 2.845724361361119, 3.534429220033395, 4.215200486355545, 4.865327517281081, 5.351657969805176, 6.100569167265777, 6.405245956911110, 6.974119418917588, 7.541482561964946, 8.083267697695306, 8.634749035406994, 8.940050778462383, 9.762576622392214, 10.15460874029904, 10.49340053364289, 11.15661991359324, 11.38921205774272, 12.02008575113010, 12.57143591236291, 12.97702813256050, 13.32883331131997, 14.31051793253173

Graph of the $Z$-function along the critical line