Properties

Label 2-9386-1.1-c1-0-146
Degree $2$
Conductor $9386$
Sign $1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s − 2·9-s + 10-s + 12-s + 13-s − 14-s + 15-s + 16-s − 3·17-s − 2·18-s + 20-s − 21-s + 6·23-s + 24-s − 4·25-s + 26-s − 5·27-s − 28-s + 8·29-s + 30-s + 8·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.316·10-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.727·17-s − 0.471·18-s + 0.223·20-s − 0.218·21-s + 1.25·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.962·27-s − 0.188·28-s + 1.48·29-s + 0.182·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.213062172\)
\(L(\frac12)\) \(\approx\) \(4.213062172\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77808229758499441145646543063, −6.73012034880410018220611396370, −6.38373269531841200289312116192, −5.67478604171952694894039409661, −4.88784677174878571864387230829, −4.21913409185737934077264226827, −3.28701995118730367715016766712, −2.75395030363936064651359100866, −2.09067779247562318341024415317, −0.848821507408804907292462336215, 0.848821507408804907292462336215, 2.09067779247562318341024415317, 2.75395030363936064651359100866, 3.28701995118730367715016766712, 4.21913409185737934077264226827, 4.88784677174878571864387230829, 5.67478604171952694894039409661, 6.38373269531841200289312116192, 6.73012034880410018220611396370, 7.77808229758499441145646543063

Graph of the $Z$-function along the critical line