Properties

Label 2-925-1.1-c1-0-27
Degree $2$
Conductor $925$
Sign $1$
Analytic cond. $7.38616$
Root an. cond. $2.71774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 2·6-s + 5·7-s − 2·9-s + 3·11-s − 2·12-s + 2·13-s + 10·14-s − 4·16-s + 4·17-s − 4·18-s − 4·19-s − 5·21-s + 6·22-s + 2·23-s + 4·26-s + 5·27-s + 10·28-s + 2·29-s − 8·32-s − 3·33-s + 8·34-s − 4·36-s + 37-s − 8·38-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s + 1.88·7-s − 2/3·9-s + 0.904·11-s − 0.577·12-s + 0.554·13-s + 2.67·14-s − 16-s + 0.970·17-s − 0.942·18-s − 0.917·19-s − 1.09·21-s + 1.27·22-s + 0.417·23-s + 0.784·26-s + 0.962·27-s + 1.88·28-s + 0.371·29-s − 1.41·32-s − 0.522·33-s + 1.37·34-s − 2/3·36-s + 0.164·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(925\)    =    \(5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(7.38616\)
Root analytic conductor: \(2.71774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.213748806\)
\(L(\frac12)\) \(\approx\) \(3.213748806\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
37 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60855403390974587720352424268, −9.037708122147747799705982873278, −8.385038889128347053395819374736, −7.32877070600283154035094752201, −6.12609005306951811640483977590, −5.66470469165381738162827215332, −4.70424603737437836314377918089, −4.15459429389693587359434143709, −2.84209119849355748547672875930, −1.40770936121954750346064260205, 1.40770936121954750346064260205, 2.84209119849355748547672875930, 4.15459429389693587359434143709, 4.70424603737437836314377918089, 5.66470469165381738162827215332, 6.12609005306951811640483977590, 7.32877070600283154035094752201, 8.385038889128347053395819374736, 9.037708122147747799705982873278, 10.60855403390974587720352424268

Graph of the $Z$-function along the critical line