Properties

Label 2-90090-1.1-c1-0-47
Degree $2$
Conductor $90090$
Sign $1$
Analytic cond. $719.372$
Root an. cond. $26.8211$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s − 11-s + 13-s + 14-s + 16-s + 6·17-s + 2·19-s + 20-s − 22-s + 3·23-s + 25-s + 26-s + 28-s − 6·29-s − 4·31-s + 32-s + 6·34-s + 35-s + 2·37-s + 2·38-s + 40-s + 12·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s − 0.301·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.458·19-s + 0.223·20-s − 0.213·22-s + 0.625·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s + 0.169·35-s + 0.328·37-s + 0.324·38-s + 0.158·40-s + 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(90090\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(719.372\)
Root analytic conductor: \(26.8211\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 90090,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.039307788\)
\(L(\frac12)\) \(\approx\) \(6.039307788\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
good17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05070775797982, −13.28227173578952, −12.94695953405277, −12.48984028427948, −12.01999857327259, −11.35053752820433, −10.98022425585527, −10.57656389796067, −9.914758348617220, −9.283014310038328, −9.130268860176586, −8.027399747053673, −7.810478125888407, −7.332110285588637, −6.621709999653371, −6.045509296177963, −5.437256085285124, −5.306315169815122, −4.536420794961803, −3.849851200799989, −3.369127450471352, −2.713836532995871, −2.091181534623669, −1.353034976890365, −0.7300235034511670, 0.7300235034511670, 1.353034976890365, 2.091181534623669, 2.713836532995871, 3.369127450471352, 3.849851200799989, 4.536420794961803, 5.306315169815122, 5.437256085285124, 6.045509296177963, 6.621709999653371, 7.332110285588637, 7.810478125888407, 8.027399747053673, 9.130268860176586, 9.283014310038328, 9.914758348617220, 10.57656389796067, 10.98022425585527, 11.35053752820433, 12.01999857327259, 12.48984028427948, 12.94695953405277, 13.28227173578952, 14.05070775797982

Graph of the $Z$-function along the critical line