Properties

Label 2-89232-1.1-c1-0-5
Degree $2$
Conductor $89232$
Sign $1$
Analytic cond. $712.521$
Root an. cond. $26.6930$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 4·7-s + 9-s + 11-s + 2·15-s − 4·17-s + 19-s − 4·21-s − 7·23-s − 25-s + 27-s − 5·29-s + 33-s − 8·35-s − 8·37-s − 8·41-s + 43-s + 2·45-s + 7·47-s + 9·49-s − 4·51-s + 8·53-s + 2·55-s + 57-s + 4·59-s − 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.516·15-s − 0.970·17-s + 0.229·19-s − 0.872·21-s − 1.45·23-s − 1/5·25-s + 0.192·27-s − 0.928·29-s + 0.174·33-s − 1.35·35-s − 1.31·37-s − 1.24·41-s + 0.152·43-s + 0.298·45-s + 1.02·47-s + 9/7·49-s − 0.560·51-s + 1.09·53-s + 0.269·55-s + 0.132·57-s + 0.520·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 89232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(89232\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(712.521\)
Root analytic conductor: \(26.6930\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 89232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.392459997\)
\(L(\frac12)\) \(\approx\) \(1.392459997\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74405109491625, −13.62109050607976, −12.88869264322536, −12.63139762813548, −11.96375463531172, −11.52978526764729, −10.68928385373098, −10.13160752478192, −9.980996341479986, −9.353061083888241, −8.979923642156258, −8.566029537030832, −7.781761341354950, −7.202842508189932, −6.618535356035683, −6.359857727610323, −5.644629059659574, −5.296322950596339, −4.247162670918420, −3.833150023739342, −3.332739441628208, −2.556661820621464, −2.105337719916939, −1.499264295551046, −0.3384439223575945, 0.3384439223575945, 1.499264295551046, 2.105337719916939, 2.556661820621464, 3.332739441628208, 3.833150023739342, 4.247162670918420, 5.296322950596339, 5.644629059659574, 6.359857727610323, 6.618535356035683, 7.202842508189932, 7.781761341354950, 8.566029537030832, 8.979923642156258, 9.353061083888241, 9.980996341479986, 10.13160752478192, 10.68928385373098, 11.52978526764729, 11.96375463531172, 12.63139762813548, 12.88869264322536, 13.62109050607976, 13.74405109491625

Graph of the $Z$-function along the critical line