L(s) = 1 | + 2-s − 3-s + 4-s − 5-s − 6-s − 3·7-s + 8-s + 9-s − 10-s + 11-s − 12-s − 13-s − 3·14-s + 15-s + 16-s − 4·17-s + 18-s − 2·19-s − 20-s + 3·21-s + 22-s − 23-s − 24-s − 4·25-s − 26-s − 27-s − 3·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.277·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.458·19-s − 0.223·20-s + 0.654·21-s + 0.213·22-s − 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s − 0.566·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 3 | \( 1 + T \) | |
| 11 | \( 1 - T \) | |
| 13 | \( 1 + T \) | |
good | 5 | \( 1 + T + p T^{2} \) | 1.5.b |
| 7 | \( 1 + 3 T + p T^{2} \) | 1.7.d |
| 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e |
| 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c |
| 23 | \( 1 + T + p T^{2} \) | 1.23.b |
| 29 | \( 1 + 9 T + p T^{2} \) | 1.29.j |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g |
| 41 | \( 1 - T + p T^{2} \) | 1.41.ab |
| 43 | \( 1 - 11 T + p T^{2} \) | 1.43.al |
| 47 | \( 1 + p T^{2} \) | 1.47.a |
| 53 | \( 1 + 10 T + p T^{2} \) | 1.53.k |
| 59 | \( 1 + 3 T + p T^{2} \) | 1.59.d |
| 61 | \( 1 - 5 T + p T^{2} \) | 1.61.af |
| 67 | \( 1 - 3 T + p T^{2} \) | 1.67.ad |
| 71 | \( 1 - 10 T + p T^{2} \) | 1.71.ak |
| 73 | \( 1 - 9 T + p T^{2} \) | 1.73.aj |
| 79 | \( 1 - 10 T + p T^{2} \) | 1.79.ak |
| 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g |
| 89 | \( 1 + 8 T + p T^{2} \) | 1.89.i |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.795238032318136542579223751531, −9.099744067283236769447486266888, −7.77412655520742426275687356345, −6.91932825891538740607422871759, −6.23938873931087329642395817658, −5.38167719244677080725061196628, −4.20463260319603890720313496563, −3.53633189754442679007574908325, −2.11903261953524757715434735458, 0,
2.11903261953524757715434735458, 3.53633189754442679007574908325, 4.20463260319603890720313496563, 5.38167719244677080725061196628, 6.23938873931087329642395817658, 6.91932825891538740607422871759, 7.77412655520742426275687356345, 9.099744067283236769447486266888, 9.795238032318136542579223751531