Properties

Label 2-858-1.1-c1-0-20
Degree $2$
Conductor $858$
Sign $-1$
Analytic cond. $6.85116$
Root an. cond. $2.61747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s − 3·7-s + 8-s + 9-s − 10-s + 11-s − 12-s − 13-s − 3·14-s + 15-s + 16-s − 4·17-s + 18-s − 2·19-s − 20-s + 3·21-s + 22-s − 23-s − 24-s − 4·25-s − 26-s − 27-s − 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.277·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.458·19-s − 0.223·20-s + 0.654·21-s + 0.213·22-s − 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 858 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(858\)    =    \(2 \cdot 3 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(6.85116\)
Root analytic conductor: \(2.61747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 858,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.795238032318136542579223751531, −9.099744067283236769447486266888, −7.77412655520742426275687356345, −6.91932825891538740607422871759, −6.23938873931087329642395817658, −5.38167719244677080725061196628, −4.20463260319603890720313496563, −3.53633189754442679007574908325, −2.11903261953524757715434735458, 0, 2.11903261953524757715434735458, 3.53633189754442679007574908325, 4.20463260319603890720313496563, 5.38167719244677080725061196628, 6.23938873931087329642395817658, 6.91932825891538740607422871759, 7.77412655520742426275687356345, 9.099744067283236769447486266888, 9.795238032318136542579223751531

Graph of the $Z$-function along the critical line