Properties

Label 2-84700-1.1-c1-0-28
Degree $2$
Conductor $84700$
Sign $1$
Analytic cond. $676.332$
Root an. cond. $26.0064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 7-s + 6·9-s − 13-s + 5·17-s + 8·19-s − 3·21-s + 2·23-s + 9·27-s + 29-s − 2·31-s + 10·37-s − 3·39-s + 6·41-s + 4·43-s + 11·47-s + 49-s + 15·51-s + 6·53-s + 24·57-s − 10·59-s − 6·63-s − 10·67-s + 6·69-s + 10·73-s + 7·79-s + 9·81-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.377·7-s + 2·9-s − 0.277·13-s + 1.21·17-s + 1.83·19-s − 0.654·21-s + 0.417·23-s + 1.73·27-s + 0.185·29-s − 0.359·31-s + 1.64·37-s − 0.480·39-s + 0.937·41-s + 0.609·43-s + 1.60·47-s + 1/7·49-s + 2.10·51-s + 0.824·53-s + 3.17·57-s − 1.30·59-s − 0.755·63-s − 1.22·67-s + 0.722·69-s + 1.17·73-s + 0.787·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84700\)    =    \(2^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(676.332\)
Root analytic conductor: \(26.0064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 84700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.898558430\)
\(L(\frac12)\) \(\approx\) \(6.898558430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91577853568572, −13.66484166040541, −13.04138872627378, −12.55720518794550, −12.13255857274509, −11.55237645129165, −10.80921111374083, −10.24377518310321, −9.739235661389362, −9.265714151121719, −9.152676711302840, −8.362157283035399, −7.702532817097997, −7.529672699368727, −7.165416632324067, −6.219852085935306, −5.680140878401911, −5.032523859050165, −4.288047347043166, −3.758987751916099, −3.179604937596137, −2.778099942930972, −2.270332157387352, −1.274442541040385, −0.8467429321915256, 0.8467429321915256, 1.274442541040385, 2.270332157387352, 2.778099942930972, 3.179604937596137, 3.758987751916099, 4.288047347043166, 5.032523859050165, 5.680140878401911, 6.219852085935306, 7.165416632324067, 7.529672699368727, 7.702532817097997, 8.362157283035399, 9.152676711302840, 9.265714151121719, 9.739235661389362, 10.24377518310321, 10.80921111374083, 11.55237645129165, 12.13255857274509, 12.55720518794550, 13.04138872627378, 13.66484166040541, 13.91577853568572

Graph of the $Z$-function along the critical line