Properties

Label 2-8330-1.1-c1-0-49
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s − 2·9-s − 10-s + 11-s − 12-s + 13-s + 15-s + 16-s − 17-s − 2·18-s + 6·19-s − 20-s + 22-s − 8·23-s − 24-s + 25-s + 26-s + 5·27-s + 4·29-s + 30-s + 32-s − 33-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.471·18-s + 1.37·19-s − 0.223·20-s + 0.213·22-s − 1.66·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.962·27-s + 0.742·29-s + 0.182·30-s + 0.176·32-s − 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.051651003\)
\(L(\frac12)\) \(\approx\) \(2.051651003\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74876034261526622280953460143, −6.92402314995680862678687926100, −6.29507868438233452700540640013, −5.68275396203538919628256641423, −5.08387292226239265768758949158, −4.30596646715780181078229358578, −3.55810032163963275833456571533, −2.88785158995212483124678917167, −1.82250017882535524231054396707, −0.64433564220830929019379645591, 0.64433564220830929019379645591, 1.82250017882535524231054396707, 2.88785158995212483124678917167, 3.55810032163963275833456571533, 4.30596646715780181078229358578, 5.08387292226239265768758949158, 5.68275396203538919628256641423, 6.29507868438233452700540640013, 6.92402314995680862678687926100, 7.74876034261526622280953460143

Graph of the $Z$-function along the critical line