Properties

Label 2-8190-1.1-c1-0-62
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s + 6·11-s − 13-s + 14-s + 16-s − 4·17-s + 8·19-s − 20-s + 6·22-s + 8·23-s + 25-s − 26-s + 28-s + 2·29-s − 6·31-s + 32-s − 4·34-s − 35-s + 6·37-s + 8·38-s − 40-s − 6·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s + 1.80·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.970·17-s + 1.83·19-s − 0.223·20-s + 1.27·22-s + 1.66·23-s + 1/5·25-s − 0.196·26-s + 0.188·28-s + 0.371·29-s − 1.07·31-s + 0.176·32-s − 0.685·34-s − 0.169·35-s + 0.986·37-s + 1.29·38-s − 0.158·40-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.930285617\)
\(L(\frac12)\) \(\approx\) \(3.930285617\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46014967499755461040700177781, −7.16126311070972583713256231939, −6.46316360681846536975201599552, −5.68495964347406674439645451175, −4.82945671505728617326534232155, −4.38977965724617456739179028873, −3.50843977366428260763909240096, −2.95726555220118974098632353190, −1.73290363067052476205715027584, −0.947056838645445870177592023373, 0.947056838645445870177592023373, 1.73290363067052476205715027584, 2.95726555220118974098632353190, 3.50843977366428260763909240096, 4.38977965724617456739179028873, 4.82945671505728617326534232155, 5.68495964347406674439645451175, 6.46316360681846536975201599552, 7.16126311070972583713256231939, 7.46014967499755461040700177781

Graph of the $Z$-function along the critical line