Properties

Label 8190.bj
Number of curves $2$
Conductor $8190$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8190.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8190.bj do not have complex multiplication.

Modular form 8190.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} + 6 q^{11} - q^{13} + q^{14} + q^{16} - 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8190.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8190.bj1 8190bj1 \([1, -1, 1, -13811333, -18708808323]\) \(399671282266555297146121/23795714975760000000\) \(17347076217329040000000\) \([2]\) \(1075200\) \(3.0202\) \(\Gamma_0(N)\)-optimal
8190.bj2 8190bj2 \([1, -1, 1, 10390747, -77306884419]\) \(170190978202632673472759/3639795481054687500000\) \(-2653410905688867187500000\) \([2]\) \(2150400\) \(3.3668\)