Properties

Label 2-8190-1.1-c1-0-34
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 7-s − 8-s − 10-s − 13-s − 14-s + 16-s − 2·17-s + 4·19-s + 20-s + 8·23-s + 25-s + 26-s + 28-s − 10·29-s + 4·31-s − 32-s + 2·34-s + 35-s + 10·37-s − 4·38-s − 40-s − 6·41-s − 8·46-s + 4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.223·20-s + 1.66·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 1.85·29-s + 0.718·31-s − 0.176·32-s + 0.342·34-s + 0.169·35-s + 1.64·37-s − 0.648·38-s − 0.158·40-s − 0.937·41-s − 1.17·46-s + 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.706378846\)
\(L(\frac12)\) \(\approx\) \(1.706378846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71051564543209933535935466982, −7.29374187461655957576075016952, −6.58894372928010091161412620387, −5.75411905218635527276875673041, −5.15995623323811083702438577658, −4.34508854765871894206559153521, −3.27242650566967892437314634364, −2.53034116885894039152679399556, −1.64971253501805017577982325693, −0.74083214778129269410623102876, 0.74083214778129269410623102876, 1.64971253501805017577982325693, 2.53034116885894039152679399556, 3.27242650566967892437314634364, 4.34508854765871894206559153521, 5.15995623323811083702438577658, 5.75411905218635527276875673041, 6.58894372928010091161412620387, 7.29374187461655957576075016952, 7.71051564543209933535935466982

Graph of the $Z$-function along the critical line