Properties

Label 2-81144-1.1-c1-0-33
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 3·11-s + 6·13-s − 2·17-s + 2·19-s − 23-s + 4·25-s − 29-s − 5·31-s + 2·37-s + 6·41-s + 10·43-s + 2·47-s + 5·53-s + 9·55-s − 3·59-s − 2·61-s + 18·65-s − 14·67-s + 12·71-s + 6·73-s + 79-s + 15·83-s − 6·85-s − 4·89-s + 6·95-s + 9·97-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.904·11-s + 1.66·13-s − 0.485·17-s + 0.458·19-s − 0.208·23-s + 4/5·25-s − 0.185·29-s − 0.898·31-s + 0.328·37-s + 0.937·41-s + 1.52·43-s + 0.291·47-s + 0.686·53-s + 1.21·55-s − 0.390·59-s − 0.256·61-s + 2.23·65-s − 1.71·67-s + 1.42·71-s + 0.702·73-s + 0.112·79-s + 1.64·83-s − 0.650·85-s − 0.423·89-s + 0.615·95-s + 0.913·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.779424862\)
\(L(\frac12)\) \(\approx\) \(4.779424862\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96410852521766, −13.51642732835397, −13.12716554541431, −12.61141482466504, −12.00644426956499, −11.41516621662148, −10.84352913272480, −10.66123301592125, −9.878680162717332, −9.333163932568012, −9.050863229885003, −8.679168895059767, −7.828260714772095, −7.348883902818938, −6.552396290001693, −6.192885435142492, −5.840329115781744, −5.301788096154633, −4.490759646387811, −3.882826451786761, −3.425767116803320, −2.527938588340274, −1.971820050792112, −1.327392407813857, −0.7626102585162257, 0.7626102585162257, 1.327392407813857, 1.971820050792112, 2.527938588340274, 3.425767116803320, 3.882826451786761, 4.490759646387811, 5.301788096154633, 5.840329115781744, 6.192885435142492, 6.552396290001693, 7.348883902818938, 7.828260714772095, 8.679168895059767, 9.050863229885003, 9.333163932568012, 9.878680162717332, 10.66123301592125, 10.84352913272480, 11.41516621662148, 12.00644426956499, 12.61141482466504, 13.12716554541431, 13.51642732835397, 13.96410852521766

Graph of the $Z$-function along the critical line