Properties

Label 2-81144-1.1-c1-0-25
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s + 3·13-s − 23-s − 5·25-s + 3·29-s + 7·31-s + 8·37-s − 11·41-s + 4·43-s + 47-s − 4·53-s + 12·59-s + 6·61-s + 12·67-s + 5·71-s − 15·73-s − 4·79-s − 12·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.80·11-s + 0.832·13-s − 0.208·23-s − 25-s + 0.557·29-s + 1.25·31-s + 1.31·37-s − 1.71·41-s + 0.609·43-s + 0.145·47-s − 0.549·53-s + 1.56·59-s + 0.768·61-s + 1.46·67-s + 0.593·71-s − 1.75·73-s − 0.450·79-s − 1.27·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.405408937\)
\(L(\frac12)\) \(\approx\) \(3.405408937\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 11 T + p T^{2} \) 1.41.l
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09625859506087, −13.43495505882593, −13.16258678822286, −12.35788214771777, −11.92315791989842, −11.51258136150076, −11.20836404798221, −10.44159361701251, −9.737853394809113, −9.689299842813092, −8.848010946002262, −8.430892754918249, −8.065515304113941, −7.230156352872471, −6.675930575527607, −6.336330744559869, −5.815269488136689, −5.151768252435075, −4.242028363554715, −4.093564805052486, −3.428822966878049, −2.717823978520966, −1.895744801180052, −1.265341497154439, −0.6585699314353960, 0.6585699314353960, 1.265341497154439, 1.895744801180052, 2.717823978520966, 3.428822966878049, 4.093564805052486, 4.242028363554715, 5.151768252435075, 5.815269488136689, 6.336330744559869, 6.675930575527607, 7.230156352872471, 8.065515304113941, 8.430892754918249, 8.848010946002262, 9.689299842813092, 9.737853394809113, 10.44159361701251, 11.20836404798221, 11.51258136150076, 11.92315791989842, 12.35788214771777, 13.16258678822286, 13.43495505882593, 14.09625859506087

Graph of the $Z$-function along the critical line