Properties

Label 2-8112-1.1-c1-0-132
Degree $2$
Conductor $8112$
Sign $-1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 9-s − 3·15-s − 17-s − 4·23-s + 4·25-s − 27-s + 3·29-s − 8·31-s − 5·37-s + 3·41-s − 4·43-s + 3·45-s + 8·47-s − 7·49-s + 51-s − 13·53-s − 12·59-s + 15·61-s − 12·67-s + 4·69-s − 8·71-s + 3·73-s − 4·75-s + 4·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.774·15-s − 0.242·17-s − 0.834·23-s + 4/5·25-s − 0.192·27-s + 0.557·29-s − 1.43·31-s − 0.821·37-s + 0.468·41-s − 0.609·43-s + 0.447·45-s + 1.16·47-s − 49-s + 0.140·51-s − 1.78·53-s − 1.56·59-s + 1.92·61-s − 1.46·67-s + 0.481·69-s − 0.949·71-s + 0.351·73-s − 0.461·75-s + 0.450·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35806729137958711531664902334, −6.58501106616391728562045756115, −6.07589780882340551764586811195, −5.48921778277559217286886482591, −4.85935508655331033288333768424, −3.99558745409722001592661650199, −2.99830302876158519076817978513, −2.02425413745695052632367493481, −1.42900936833239416444795719221, 0, 1.42900936833239416444795719221, 2.02425413745695052632367493481, 2.99830302876158519076817978513, 3.99558745409722001592661650199, 4.85935508655331033288333768424, 5.48921778277559217286886482591, 6.07589780882340551764586811195, 6.58501106616391728562045756115, 7.35806729137958711531664902334

Graph of the $Z$-function along the critical line