Properties

Label 2-78144-1.1-c1-0-48
Degree $2$
Conductor $78144$
Sign $-1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 2·7-s + 9-s + 11-s − 4·13-s + 2·15-s − 2·17-s + 4·19-s − 2·21-s − 4·23-s − 25-s − 27-s + 10·29-s − 33-s − 4·35-s + 37-s + 4·39-s − 4·43-s − 2·45-s − 3·49-s + 2·51-s − 2·53-s − 2·55-s − 4·57-s − 8·59-s + 2·63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.755·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 0.516·15-s − 0.485·17-s + 0.917·19-s − 0.436·21-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.85·29-s − 0.174·33-s − 0.676·35-s + 0.164·37-s + 0.640·39-s − 0.609·43-s − 0.298·45-s − 3/7·49-s + 0.280·51-s − 0.274·53-s − 0.269·55-s − 0.529·57-s − 1.04·59-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16769012993441, −13.97401792692482, −13.26333470868294, −12.43682334946380, −12.28629115748270, −11.68060193913119, −11.45457293154934, −10.96272404936820, −10.16386605385880, −9.933020755635346, −9.298975283537446, −8.494112328640070, −8.185733818724952, −7.532176998068722, −7.259921068235274, −6.523919434934634, −6.062124379521489, −5.256491192392918, −4.748054495791763, −4.474902429848697, −3.749198986375890, −3.079827245860469, −2.312307396035664, −1.591528078616956, −0.7802815083214842, 0, 0.7802815083214842, 1.591528078616956, 2.312307396035664, 3.079827245860469, 3.749198986375890, 4.474902429848697, 4.748054495791763, 5.256491192392918, 6.062124379521489, 6.523919434934634, 7.259921068235274, 7.532176998068722, 8.185733818724952, 8.494112328640070, 9.298975283537446, 9.933020755635346, 10.16386605385880, 10.96272404936820, 11.45457293154934, 11.68060193913119, 12.28629115748270, 12.43682334946380, 13.26333470868294, 13.97401792692482, 14.16769012993441

Graph of the $Z$-function along the critical line