Properties

Label 2-78144-1.1-c1-0-37
Degree $2$
Conductor $78144$
Sign $1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 11-s − 2·13-s + 2·15-s + 6·17-s + 4·19-s + 4·23-s − 25-s + 27-s + 6·29-s − 4·31-s − 33-s − 37-s − 2·39-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s − 7·49-s + 6·51-s + 10·53-s − 2·55-s + 4·57-s − 2·61-s − 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.516·15-s + 1.45·17-s + 0.917·19-s + 0.834·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.718·31-s − 0.174·33-s − 0.164·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s − 49-s + 0.840·51-s + 1.37·53-s − 0.269·55-s + 0.529·57-s − 0.256·61-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.573507174\)
\(L(\frac12)\) \(\approx\) \(4.573507174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97190920832201, −13.66074071306596, −13.13048650744637, −12.49456206756528, −12.21992823129322, −11.58411446144676, −10.94878404123667, −10.28417121146306, −9.914153918575415, −9.655684546873867, −8.969615028693859, −8.525299350680445, −7.880969013242844, −7.301205851238889, −7.062227385467441, −6.154648605663387, −5.676366681317679, −5.165064115807202, −4.703893931741530, −3.787030312219613, −3.232522190789859, −2.716116446372525, −2.081834033948639, −1.363324183021075, −0.7005306073302050, 0.7005306073302050, 1.363324183021075, 2.081834033948639, 2.716116446372525, 3.232522190789859, 3.787030312219613, 4.703893931741530, 5.165064115807202, 5.676366681317679, 6.154648605663387, 7.062227385467441, 7.301205851238889, 7.880969013242844, 8.525299350680445, 8.969615028693859, 9.655684546873867, 9.914153918575415, 10.28417121146306, 10.94878404123667, 11.58411446144676, 12.21992823129322, 12.49456206756528, 13.13048650744637, 13.66074071306596, 13.97190920832201

Graph of the $Z$-function along the critical line