Properties

Label 2-7742-1.1-c1-0-76
Degree $2$
Conductor $7742$
Sign $1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 3·9-s − 2·10-s + 5·11-s + 2·13-s + 16-s + 4·17-s + 3·18-s − 8·19-s + 2·20-s − 5·22-s − 25-s − 2·26-s + 3·29-s − 32-s − 4·34-s − 3·36-s − 3·37-s + 8·38-s − 2·40-s + 2·41-s − 8·43-s + 5·44-s − 6·45-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 9-s − 0.632·10-s + 1.50·11-s + 0.554·13-s + 1/4·16-s + 0.970·17-s + 0.707·18-s − 1.83·19-s + 0.447·20-s − 1.06·22-s − 1/5·25-s − 0.392·26-s + 0.557·29-s − 0.176·32-s − 0.685·34-s − 1/2·36-s − 0.493·37-s + 1.29·38-s − 0.316·40-s + 0.312·41-s − 1.21·43-s + 0.753·44-s − 0.894·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.772250764\)
\(L(\frac12)\) \(\approx\) \(1.772250764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 + T + p T^{2} \) 1.73.b
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.220701567923354224541276128378, −7.03270191722903092083144502088, −6.46040163731463222784437976129, −5.96893621998516061171982111211, −5.35094116344613477775713597842, −4.15259553690520012968954992591, −3.45988419950193376300645464659, −2.42097322724825255638829502298, −1.73519115986432019918067141000, −0.75380318991393529487366787938, 0.75380318991393529487366787938, 1.73519115986432019918067141000, 2.42097322724825255638829502298, 3.45988419950193376300645464659, 4.15259553690520012968954992591, 5.35094116344613477775713597842, 5.96893621998516061171982111211, 6.46040163731463222784437976129, 7.03270191722903092083144502088, 8.220701567923354224541276128378

Graph of the $Z$-function along the critical line