Properties

Label 2-765-1.1-c1-0-10
Degree $2$
Conductor $765$
Sign $1$
Analytic cond. $6.10855$
Root an. cond. $2.47154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 5-s + 4·7-s − 3·8-s − 10-s + 2·11-s + 2·13-s + 4·14-s − 16-s + 17-s + 20-s + 2·22-s + 25-s + 2·26-s − 4·28-s + 6·29-s + 8·31-s + 5·32-s + 34-s − 4·35-s + 8·37-s + 3·40-s − 2·41-s − 2·43-s − 2·44-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.51·7-s − 1.06·8-s − 0.316·10-s + 0.603·11-s + 0.554·13-s + 1.06·14-s − 1/4·16-s + 0.242·17-s + 0.223·20-s + 0.426·22-s + 1/5·25-s + 0.392·26-s − 0.755·28-s + 1.11·29-s + 1.43·31-s + 0.883·32-s + 0.171·34-s − 0.676·35-s + 1.31·37-s + 0.474·40-s − 0.312·41-s − 0.304·43-s − 0.301·44-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(765\)    =    \(3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(6.10855\)
Root analytic conductor: \(2.47154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 765,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.061634832\)
\(L(\frac12)\) \(\approx\) \(2.061634832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.44787456578569469993098267623, −9.380761151050205211625571979315, −8.388802085021799096646662139328, −8.039484014745913836048377756002, −6.67603653027263764822986131544, −5.68500538082780401805673938737, −4.65554628665035948752787960158, −4.21354047156725909905435186301, −2.95336854432552375819757692984, −1.20847193299842148280252913365, 1.20847193299842148280252913365, 2.95336854432552375819757692984, 4.21354047156725909905435186301, 4.65554628665035948752787960158, 5.68500538082780401805673938737, 6.67603653027263764822986131544, 8.039484014745913836048377756002, 8.388802085021799096646662139328, 9.380761151050205211625571979315, 10.44787456578569469993098267623

Graph of the $Z$-function along the critical line