Properties

Label 2-735-1.1-c1-0-19
Degree $2$
Conductor $735$
Sign $-1$
Analytic cond. $5.86900$
Root an. cond. $2.42260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 5-s + 9-s + 2·12-s + 13-s − 15-s + 4·16-s − 6·17-s − 5·19-s − 2·20-s + 6·23-s + 25-s − 27-s − 6·29-s − 5·31-s − 2·36-s − 7·37-s − 39-s − 12·41-s − 43-s + 45-s − 6·47-s − 4·48-s + 6·51-s − 2·52-s + 5·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.447·5-s + 1/3·9-s + 0.577·12-s + 0.277·13-s − 0.258·15-s + 16-s − 1.45·17-s − 1.14·19-s − 0.447·20-s + 1.25·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.898·31-s − 1/3·36-s − 1.15·37-s − 0.160·39-s − 1.87·41-s − 0.152·43-s + 0.149·45-s − 0.875·47-s − 0.577·48-s + 0.840·51-s − 0.277·52-s + 0.662·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(5.86900\)
Root analytic conductor: \(2.42260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 735,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.995796123322737352351474895831, −8.960945268524742896229550337862, −8.603472667172365262215880298161, −7.18962953853699406184660490974, −6.34498577185094261386989897294, −5.32128135563663028070385926165, −4.61470299997904821875511065104, −3.53725365281124946738454390453, −1.80163328686849374891334706368, 0, 1.80163328686849374891334706368, 3.53725365281124946738454390453, 4.61470299997904821875511065104, 5.32128135563663028070385926165, 6.34498577185094261386989897294, 7.18962953853699406184660490974, 8.603472667172365262215880298161, 8.960945268524742896229550337862, 9.995796123322737352351474895831

Graph of the $Z$-function along the critical line