| L(s)  = 1  |         − 2·5-s     + 7-s             + 4·13-s             + 19-s         + 6·23-s     − 25-s         − 3·29-s     − 9·31-s         − 2·35-s     + 6·37-s         + 6·41-s     + 6·43-s         + 47-s     + 49-s         − 13·53-s             − 7·59-s     − 10·61-s         − 8·65-s     + 6·67-s         − 6·71-s     + 2·73-s             + 16·79-s         − 15·83-s             + 14·89-s     + 4·91-s         − 2·95-s     + 4·97-s  + ⋯ | 
 
| L(s)  = 1  |         − 0.894·5-s     + 0.377·7-s             + 1.10·13-s             + 0.229·19-s         + 1.25·23-s     − 1/5·25-s         − 0.557·29-s     − 1.61·31-s         − 0.338·35-s     + 0.986·37-s         + 0.937·41-s     + 0.914·43-s         + 0.145·47-s     + 1/7·49-s         − 1.78·53-s             − 0.911·59-s     − 1.28·61-s         − 0.992·65-s     + 0.733·67-s         − 0.712·71-s     + 0.234·73-s             + 1.80·79-s         − 1.64·83-s             + 1.48·89-s     + 0.419·91-s         − 0.205·95-s     + 0.406·97-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
 | 17 |  \( 1 \)  |    | 
| good | 5 |  \( 1 + 2 T + p T^{2} \)  |  1.5.c  | 
 | 11 |  \( 1 + p T^{2} \)  |  1.11.a  | 
 | 13 |  \( 1 - 4 T + p T^{2} \)  |  1.13.ae  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 - 6 T + p T^{2} \)  |  1.23.ag  | 
 | 29 |  \( 1 + 3 T + p T^{2} \)  |  1.29.d  | 
 | 31 |  \( 1 + 9 T + p T^{2} \)  |  1.31.j  | 
 | 37 |  \( 1 - 6 T + p T^{2} \)  |  1.37.ag  | 
 | 41 |  \( 1 - 6 T + p T^{2} \)  |  1.41.ag  | 
 | 43 |  \( 1 - 6 T + p T^{2} \)  |  1.43.ag  | 
 | 47 |  \( 1 - T + p T^{2} \)  |  1.47.ab  | 
 | 53 |  \( 1 + 13 T + p T^{2} \)  |  1.53.n  | 
 | 59 |  \( 1 + 7 T + p T^{2} \)  |  1.59.h  | 
 | 61 |  \( 1 + 10 T + p T^{2} \)  |  1.61.k  | 
 | 67 |  \( 1 - 6 T + p T^{2} \)  |  1.67.ag  | 
 | 71 |  \( 1 + 6 T + p T^{2} \)  |  1.71.g  | 
 | 73 |  \( 1 - 2 T + p T^{2} \)  |  1.73.ac  | 
 | 79 |  \( 1 - 16 T + p T^{2} \)  |  1.79.aq  | 
 | 83 |  \( 1 + 15 T + p T^{2} \)  |  1.83.p  | 
 | 89 |  \( 1 - 14 T + p T^{2} \)  |  1.89.ao  | 
 | 97 |  \( 1 - 4 T + p T^{2} \)  |  1.97.ae  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.38421856845493, −13.91586028657373, −13.24130678201450, −12.84688173165602, −12.41788925168622, −11.72887934474984, −11.26234617971697, −10.88930717825139, −10.68001406404712, −9.639065784818877, −9.129044368678940, −8.922496184090742, −7.998244103095949, −7.767731995001447, −7.327610159663109, −6.593612057905397, −5.989064213083539, −5.513840710681007, −4.751306527739299, −4.288811008694345, −3.614424503838009, −3.254735465923983, −2.401296577308863, −1.555808614686972, −0.9375658986948882, 0, 
0.9375658986948882, 1.555808614686972, 2.401296577308863, 3.254735465923983, 3.614424503838009, 4.288811008694345, 4.751306527739299, 5.513840710681007, 5.989064213083539, 6.593612057905397, 7.327610159663109, 7.767731995001447, 7.998244103095949, 8.922496184090742, 9.129044368678940, 9.639065784818877, 10.68001406404712, 10.88930717825139, 11.26234617971697, 11.72887934474984, 12.41788925168622, 12.84688173165602, 13.24130678201450, 13.91586028657373, 14.38421856845493