Properties

Label 2-72128-1.1-c1-0-47
Degree $2$
Conductor $72128$
Sign $-1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 6·11-s − 3·13-s + 23-s − 5·25-s − 5·27-s + 3·29-s + 7·31-s + 6·33-s − 8·37-s − 3·39-s + 11·41-s − 4·43-s − 47-s − 4·53-s + 12·59-s − 6·61-s − 12·67-s + 69-s − 5·71-s − 15·73-s − 5·75-s − 4·79-s + 81-s + 3·87-s + 12·89-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s + 1.80·11-s − 0.832·13-s + 0.208·23-s − 25-s − 0.962·27-s + 0.557·29-s + 1.25·31-s + 1.04·33-s − 1.31·37-s − 0.480·39-s + 1.71·41-s − 0.609·43-s − 0.145·47-s − 0.549·53-s + 1.56·59-s − 0.768·61-s − 1.46·67-s + 0.120·69-s − 0.593·71-s − 1.75·73-s − 0.577·75-s − 0.450·79-s + 1/9·81-s + 0.321·87-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38665211106055, −14.02264440817783, −13.45491138961983, −12.97699842582623, −12.10309927258049, −11.84622126443432, −11.65136584297337, −10.82925353588932, −10.24305513212671, −9.664355955193367, −9.280056060205222, −8.753845777293415, −8.387577871597528, −7.675904392848032, −7.212549314035068, −6.588836897779314, −6.056216612847292, −5.601035222453591, −4.656877154104016, −4.337699619676162, −3.570067731697421, −3.099875508440705, −2.408222458576652, −1.751353922649693, −1.004996329345890, 0, 1.004996329345890, 1.751353922649693, 2.408222458576652, 3.099875508440705, 3.570067731697421, 4.337699619676162, 4.656877154104016, 5.601035222453591, 6.056216612847292, 6.588836897779314, 7.212549314035068, 7.675904392848032, 8.387577871597528, 8.753845777293415, 9.280056060205222, 9.664355955193367, 10.24305513212671, 10.82925353588932, 11.65136584297337, 11.84622126443432, 12.10309927258049, 12.97699842582623, 13.45491138961983, 14.02264440817783, 14.38665211106055

Graph of the $Z$-function along the critical line