Properties

Label 2-72128-1.1-c1-0-33
Degree $2$
Conductor $72128$
Sign $-1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 6·11-s − 4·13-s + 4·15-s + 2·17-s − 4·19-s − 23-s − 25-s + 4·27-s + 10·29-s − 8·31-s − 12·33-s + 8·37-s + 8·39-s + 2·41-s + 6·43-s − 2·45-s + 12·47-s − 4·51-s − 12·53-s − 12·55-s + 8·57-s + 6·59-s − 6·61-s + 8·65-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 1.80·11-s − 1.10·13-s + 1.03·15-s + 0.485·17-s − 0.917·19-s − 0.208·23-s − 1/5·25-s + 0.769·27-s + 1.85·29-s − 1.43·31-s − 2.08·33-s + 1.31·37-s + 1.28·39-s + 0.312·41-s + 0.914·43-s − 0.298·45-s + 1.75·47-s − 0.560·51-s − 1.64·53-s − 1.61·55-s + 1.05·57-s + 0.781·59-s − 0.768·61-s + 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.42650646827040, −14.13129170455640, −13.19394785615355, −12.48337247892786, −12.27235521458085, −11.83869002256350, −11.54152095921861, −10.90119515634648, −10.53508781930012, −9.877063355096174, −9.245921655859361, −8.882953596596022, −8.141253146774397, −7.584057152159892, −7.075909587068590, −6.545871381453049, −6.010561788231838, −5.637517027957068, −4.683594102141303, −4.388741021223834, −3.939800833738069, −3.110987335938034, −2.393439242922677, −1.421860144372031, −0.7509828077885423, 0, 0.7509828077885423, 1.421860144372031, 2.393439242922677, 3.110987335938034, 3.939800833738069, 4.388741021223834, 4.683594102141303, 5.637517027957068, 6.010561788231838, 6.545871381453049, 7.075909587068590, 7.584057152159892, 8.141253146774397, 8.882953596596022, 9.245921655859361, 9.877063355096174, 10.53508781930012, 10.90119515634648, 11.54152095921861, 11.83869002256350, 12.27235521458085, 12.48337247892786, 13.19394785615355, 14.13129170455640, 14.42650646827040

Graph of the $Z$-function along the critical line