Properties

Label 2-7200-1.1-c1-0-58
Degree $2$
Conductor $7200$
Sign $-1$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·11-s − 3·13-s + 4·17-s + 19-s + 8·29-s − 31-s + 2·37-s − 2·41-s + 11·43-s − 2·47-s − 6·49-s + 10·53-s − 6·59-s + 11·61-s − 9·67-s + 6·71-s − 14·73-s + 4·77-s − 16·79-s + 2·83-s + 3·91-s − 11·97-s − 14·101-s − 8·103-s + 6·107-s − 11·109-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.20·11-s − 0.832·13-s + 0.970·17-s + 0.229·19-s + 1.48·29-s − 0.179·31-s + 0.328·37-s − 0.312·41-s + 1.67·43-s − 0.291·47-s − 6/7·49-s + 1.37·53-s − 0.781·59-s + 1.40·61-s − 1.09·67-s + 0.712·71-s − 1.63·73-s + 0.455·77-s − 1.80·79-s + 0.219·83-s + 0.314·91-s − 1.11·97-s − 1.39·101-s − 0.788·103-s + 0.580·107-s − 1.05·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55990952528509660184379426977, −7.02483085598777485384329535953, −6.09711061573529741618994459468, −5.44002752439634942979028637537, −4.83122606304056188900417487383, −3.97077702766610761045086504504, −2.90773431001244068562128203027, −2.55302736290516311687659169676, −1.19868955287852667378705259965, 0, 1.19868955287852667378705259965, 2.55302736290516311687659169676, 2.90773431001244068562128203027, 3.97077702766610761045086504504, 4.83122606304056188900417487383, 5.44002752439634942979028637537, 6.09711061573529741618994459468, 7.02483085598777485384329535953, 7.55990952528509660184379426977

Graph of the $Z$-function along the critical line