Properties

Label 2-7200-1.1-c1-0-10
Degree $2$
Conductor $7200$
Sign $1$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s − 5·13-s + 5·19-s − 4·23-s − 4·29-s − 5·31-s − 10·37-s + 10·41-s + 43-s + 2·47-s + 2·49-s + 10·53-s + 10·59-s − 5·61-s − 3·67-s + 10·71-s − 10·73-s + 14·83-s − 16·89-s + 15·91-s − 5·97-s − 2·101-s + 16·103-s − 18·107-s + 5·109-s + 20·113-s + ⋯
L(s)  = 1  − 1.13·7-s − 1.38·13-s + 1.14·19-s − 0.834·23-s − 0.742·29-s − 0.898·31-s − 1.64·37-s + 1.56·41-s + 0.152·43-s + 0.291·47-s + 2/7·49-s + 1.37·53-s + 1.30·59-s − 0.640·61-s − 0.366·67-s + 1.18·71-s − 1.17·73-s + 1.53·83-s − 1.69·89-s + 1.57·91-s − 0.507·97-s − 0.199·101-s + 1.57·103-s − 1.74·107-s + 0.478·109-s + 1.88·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.059323739\)
\(L(\frac12)\) \(\approx\) \(1.059323739\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67361090414951989277316178689, −7.27826903196968126667904362253, −6.64674661076555846543167715514, −5.68217025309635733156934929896, −5.31252053934765487070652491521, −4.23727742089387765140466820922, −3.52439593198683076920852242713, −2.75877704866021223073103188009, −1.92143103919424562128405886506, −0.49622159452317765602289034206, 0.49622159452317765602289034206, 1.92143103919424562128405886506, 2.75877704866021223073103188009, 3.52439593198683076920852242713, 4.23727742089387765140466820922, 5.31252053934765487070652491521, 5.68217025309635733156934929896, 6.64674661076555846543167715514, 7.27826903196968126667904362253, 7.67361090414951989277316178689

Graph of the $Z$-function along the critical line