Properties

Label 2-69360-1.1-c1-0-3
Degree $2$
Conductor $69360$
Sign $1$
Analytic cond. $553.842$
Root an. cond. $23.5338$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 4·11-s − 13-s + 15-s + 19-s + 21-s + 2·23-s + 25-s − 27-s − 6·29-s − 5·31-s − 4·33-s + 35-s − 3·37-s + 39-s − 7·43-s − 45-s − 6·47-s − 6·49-s − 2·53-s − 4·55-s − 57-s − 14·59-s − 5·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.277·13-s + 0.258·15-s + 0.229·19-s + 0.218·21-s + 0.417·23-s + 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.898·31-s − 0.696·33-s + 0.169·35-s − 0.493·37-s + 0.160·39-s − 1.06·43-s − 0.149·45-s − 0.875·47-s − 6/7·49-s − 0.274·53-s − 0.539·55-s − 0.132·57-s − 1.82·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69360\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(553.842\)
Root analytic conductor: \(23.5338\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5218080373\)
\(L(\frac12)\) \(\approx\) \(0.5218080373\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24413497443879, −13.55708444226403, −13.06023580968800, −12.62811814622432, −11.99500074278150, −11.74687571141512, −11.16176657681038, −10.78302623623713, −10.06457079341247, −9.603112165600928, −9.065579431053246, −8.687216695147362, −7.850944170605295, −7.297607146338473, −6.981593492609857, −6.230971316643363, −5.945952542334142, −5.126385152640343, −4.628005746922272, −4.038976866292467, −3.364446625189622, −2.983438042846971, −1.695596325181579, −1.460992039205084, −0.2501326659440727, 0.2501326659440727, 1.460992039205084, 1.695596325181579, 2.983438042846971, 3.364446625189622, 4.038976866292467, 4.628005746922272, 5.126385152640343, 5.945952542334142, 6.230971316643363, 6.981593492609857, 7.297607146338473, 7.850944170605295, 8.687216695147362, 9.065579431053246, 9.603112165600928, 10.06457079341247, 10.78302623623713, 11.16176657681038, 11.74687571141512, 11.99500074278150, 12.62811814622432, 13.06023580968800, 13.55708444226403, 14.24413497443879

Graph of the $Z$-function along the critical line