Properties

Label 2-68450-1.1-c1-0-13
Degree $2$
Conductor $68450$
Sign $1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 9-s + 4·11-s − 2·12-s − 2·13-s + 16-s + 8·17-s + 18-s + 5·19-s + 4·22-s + 23-s − 2·24-s − 2·26-s + 4·27-s − 10·29-s + 4·31-s + 32-s − 8·33-s + 8·34-s + 36-s + 5·38-s + 4·39-s + 7·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.577·12-s − 0.554·13-s + 1/4·16-s + 1.94·17-s + 0.235·18-s + 1.14·19-s + 0.852·22-s + 0.208·23-s − 0.408·24-s − 0.392·26-s + 0.769·27-s − 1.85·29-s + 0.718·31-s + 0.176·32-s − 1.39·33-s + 1.37·34-s + 1/6·36-s + 0.811·38-s + 0.640·39-s + 1.09·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.146692847\)
\(L(\frac12)\) \(\approx\) \(3.146692847\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15347345034897, −13.79438864893811, −12.95291378901957, −12.60714225813657, −12.06069288878946, −11.63444342313720, −11.45495643119303, −10.88923599015718, −10.03397990115994, −9.819386706415838, −9.291747878872213, −8.429202235682557, −7.782784947810370, −7.289382216595305, −6.761739977020309, −6.183177005451836, −5.696615065947870, −5.223066548875396, −4.873715531381008, −4.018988145170201, −3.447060445557841, −3.010367973852332, −1.947334535543526, −1.230348723102678, −0.6286509248166450, 0.6286509248166450, 1.230348723102678, 1.947334535543526, 3.010367973852332, 3.447060445557841, 4.018988145170201, 4.873715531381008, 5.223066548875396, 5.696615065947870, 6.183177005451836, 6.761739977020309, 7.289382216595305, 7.782784947810370, 8.429202235682557, 9.291747878872213, 9.819386706415838, 10.03397990115994, 10.88923599015718, 11.45495643119303, 11.63444342313720, 12.06069288878946, 12.60714225813657, 12.95291378901957, 13.79438864893811, 14.15347345034897

Graph of the $Z$-function along the critical line