Properties

Label 2-6840-1.1-c1-0-54
Degree $2$
Conductor $6840$
Sign $-1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 4·11-s + 13-s + 7·17-s − 19-s + 5·23-s + 25-s − 7·29-s − 2·31-s + 35-s − 6·37-s − 6·41-s + 10·43-s + 8·47-s − 6·49-s + 3·53-s + 4·55-s − 5·59-s − 8·61-s − 65-s + 11·67-s + 12·71-s − 9·73-s + 4·77-s + 6·79-s − 14·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 1.20·11-s + 0.277·13-s + 1.69·17-s − 0.229·19-s + 1.04·23-s + 1/5·25-s − 1.29·29-s − 0.359·31-s + 0.169·35-s − 0.986·37-s − 0.937·41-s + 1.52·43-s + 1.16·47-s − 6/7·49-s + 0.412·53-s + 0.539·55-s − 0.650·59-s − 1.02·61-s − 0.124·65-s + 1.34·67-s + 1.42·71-s − 1.05·73-s + 0.455·77-s + 0.675·79-s − 1.53·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51784017025422563991017652671, −7.18843357090761635673368072709, −6.11121317054942529327319722129, −5.45034639407982918561832958173, −4.91356602145245611087684659901, −3.77115849210867314024238891079, −3.28041305811333282223194530425, −2.40486544508861371430359964799, −1.19087560489374809732073250999, 0, 1.19087560489374809732073250999, 2.40486544508861371430359964799, 3.28041305811333282223194530425, 3.77115849210867314024238891079, 4.91356602145245611087684659901, 5.45034639407982918561832958173, 6.11121317054942529327319722129, 7.18843357090761635673368072709, 7.51784017025422563991017652671

Graph of the $Z$-function along the critical line