Properties

Label 2-6840-1.1-c1-0-15
Degree $2$
Conductor $6840$
Sign $1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·13-s + 6·17-s + 19-s − 4·23-s + 25-s + 6·29-s − 2·37-s + 2·41-s − 4·43-s + 4·47-s − 7·49-s + 6·53-s − 12·59-s − 2·61-s + 2·65-s + 4·67-s − 6·73-s + 8·79-s + 8·83-s − 6·85-s − 14·89-s − 95-s + 2·97-s + 18·101-s + 20·107-s + 6·109-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.554·13-s + 1.45·17-s + 0.229·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 0.328·37-s + 0.312·41-s − 0.609·43-s + 0.583·47-s − 49-s + 0.824·53-s − 1.56·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s − 0.702·73-s + 0.900·79-s + 0.878·83-s − 0.650·85-s − 1.48·89-s − 0.102·95-s + 0.203·97-s + 1.79·101-s + 1.93·107-s + 0.574·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.669972532\)
\(L(\frac12)\) \(\approx\) \(1.669972532\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86312805017825091570673097734, −7.44218819606865779004077247635, −6.58394915735401333840280937690, −5.85301552104361865058309984221, −5.09129255514460324966381486154, −4.40710329399950691308505029011, −3.50848174280177984641774825906, −2.87831481860071704058538315167, −1.77392413079994027798064751247, −0.66637807692875875172301411675, 0.66637807692875875172301411675, 1.77392413079994027798064751247, 2.87831481860071704058538315167, 3.50848174280177984641774825906, 4.40710329399950691308505029011, 5.09129255514460324966381486154, 5.85301552104361865058309984221, 6.58394915735401333840280937690, 7.44218819606865779004077247635, 7.86312805017825091570673097734

Graph of the $Z$-function along the critical line