Properties

Label 2-6664-1.1-c1-0-34
Degree $2$
Conductor $6664$
Sign $1$
Analytic cond. $53.2123$
Root an. cond. $7.29467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 2·5-s + 6·9-s + 5·11-s − 7·13-s − 6·15-s − 17-s + 2·19-s − 25-s − 9·27-s + 6·29-s − 4·31-s − 15·33-s − 8·37-s + 21·39-s + 2·41-s + 8·43-s + 12·45-s + 10·47-s + 3·51-s − 3·53-s + 10·55-s − 6·57-s + 12·61-s − 14·65-s + 2·67-s + 71-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.894·5-s + 2·9-s + 1.50·11-s − 1.94·13-s − 1.54·15-s − 0.242·17-s + 0.458·19-s − 1/5·25-s − 1.73·27-s + 1.11·29-s − 0.718·31-s − 2.61·33-s − 1.31·37-s + 3.36·39-s + 0.312·41-s + 1.21·43-s + 1.78·45-s + 1.45·47-s + 0.420·51-s − 0.412·53-s + 1.34·55-s − 0.794·57-s + 1.53·61-s − 1.73·65-s + 0.244·67-s + 0.118·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6664\)    =    \(2^{3} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(53.2123\)
Root analytic conductor: \(7.29467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6664,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.167375375\)
\(L(\frac12)\) \(\approx\) \(1.167375375\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66860733927778170460326291899, −6.90848186518129762938140417434, −6.64342050155731907240401695264, −5.74388561899388298258927307182, −5.34586573669869425869504598290, −4.61127700800814329376249184544, −3.91473285314472524723164861498, −2.50583074099096839702566189393, −1.60506532101432445390514842673, −0.62999088447360887739632380382, 0.62999088447360887739632380382, 1.60506532101432445390514842673, 2.50583074099096839702566189393, 3.91473285314472524723164861498, 4.61127700800814329376249184544, 5.34586573669869425869504598290, 5.74388561899388298258927307182, 6.64342050155731907240401695264, 6.90848186518129762938140417434, 7.66860733927778170460326291899

Graph of the $Z$-function along the critical line