Properties

Label 2-66066-1.1-c1-0-50
Degree $2$
Conductor $66066$
Sign $-1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 7-s − 8-s + 9-s − 12-s − 13-s − 14-s + 16-s − 3·17-s − 18-s + 2·19-s − 21-s + 3·23-s + 24-s − 5·25-s + 26-s − 27-s + 28-s + 4·29-s − 2·31-s − 32-s + 3·34-s + 36-s + 8·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s − 0.235·18-s + 0.458·19-s − 0.218·21-s + 0.625·23-s + 0.204·24-s − 25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + 0.742·29-s − 0.359·31-s − 0.176·32-s + 0.514·34-s + 1/6·36-s + 1.31·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64193562505659, −13.92297212530749, −13.32502764446706, −13.00495472409238, −12.22268869880517, −11.76850663636207, −11.49245790331085, −10.79119929527343, −10.55716370222330, −9.794203912661925, −9.453206126292966, −8.881996264733858, −8.267730911797617, −7.747767620065059, −7.242817236338180, −6.755478520191846, −6.045960870146031, −5.713629675342619, −4.860766333260571, −4.498191244915444, −3.721043518628993, −2.904379661819209, −2.279612276610150, −1.542498953660366, −0.8452247636331641, 0, 0.8452247636331641, 1.542498953660366, 2.279612276610150, 2.904379661819209, 3.721043518628993, 4.498191244915444, 4.860766333260571, 5.713629675342619, 6.045960870146031, 6.755478520191846, 7.242817236338180, 7.747767620065059, 8.267730911797617, 8.881996264733858, 9.453206126292966, 9.794203912661925, 10.55716370222330, 10.79119929527343, 11.49245790331085, 11.76850663636207, 12.22268869880517, 13.00495472409238, 13.32502764446706, 13.92297212530749, 14.64193562505659

Graph of the $Z$-function along the critical line