Properties

Label 2-64320-1.1-c1-0-50
Degree $2$
Conductor $64320$
Sign $-1$
Analytic cond. $513.597$
Root an. cond. $22.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s + 9-s − 6·11-s − 6·13-s + 15-s − 4·19-s + 4·21-s + 4·23-s + 25-s + 27-s − 2·29-s − 6·31-s − 6·33-s + 4·35-s − 4·37-s − 6·39-s + 8·41-s + 4·43-s + 45-s + 8·47-s + 9·49-s + 10·53-s − 6·55-s − 4·57-s + 12·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.80·11-s − 1.66·13-s + 0.258·15-s − 0.917·19-s + 0.872·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.07·31-s − 1.04·33-s + 0.676·35-s − 0.657·37-s − 0.960·39-s + 1.24·41-s + 0.609·43-s + 0.149·45-s + 1.16·47-s + 9/7·49-s + 1.37·53-s − 0.809·55-s − 0.529·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64320\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 67\)
Sign: $-1$
Analytic conductor: \(513.597\)
Root analytic conductor: \(22.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
67 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 4 T + p T^{2} \) 1.61.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64956564492131, −14.08359766790637, −13.45147455381751, −13.06006096507548, −12.50411214307423, −12.15650750027855, −11.30756488864944, −10.80539356855831, −10.51993389350905, −9.967594765957070, −9.322519651818612, −8.764563071986114, −8.333792485408443, −7.687358945717376, −7.343943155342046, −7.030147879690726, −5.792932412711466, −5.476246738974915, −4.869186264272558, −4.558459604986938, −3.760876879405046, −2.768088984128787, −2.269522080765069, −2.101017535728509, −1.021143174098417, 0, 1.021143174098417, 2.101017535728509, 2.269522080765069, 2.768088984128787, 3.760876879405046, 4.558459604986938, 4.869186264272558, 5.476246738974915, 5.792932412711466, 7.030147879690726, 7.343943155342046, 7.687358945717376, 8.333792485408443, 8.764563071986114, 9.322519651818612, 9.967594765957070, 10.51993389350905, 10.80539356855831, 11.30756488864944, 12.15650750027855, 12.50411214307423, 13.06006096507548, 13.45147455381751, 14.08359766790637, 14.64956564492131

Graph of the $Z$-function along the critical line