Properties

Label 2-6370-1.1-c1-0-30
Degree $2$
Conductor $6370$
Sign $1$
Analytic cond. $50.8647$
Root an. cond. $7.13194$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 8-s − 2·9-s − 10-s + 3·11-s − 12-s + 13-s + 15-s + 16-s − 2·18-s − 8·19-s − 20-s + 3·22-s + 7·23-s − 24-s + 25-s + 26-s + 5·27-s − 2·29-s + 30-s + 3·31-s + 32-s − 3·33-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.904·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s − 0.471·18-s − 1.83·19-s − 0.223·20-s + 0.639·22-s + 1.45·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.962·27-s − 0.371·29-s + 0.182·30-s + 0.538·31-s + 0.176·32-s − 0.522·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6370\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(50.8647\)
Root analytic conductor: \(7.13194\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6370,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.089190458\)
\(L(\frac12)\) \(\approx\) \(2.089190458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.058166232474312061011859548834, −6.81180626020961832494642353298, −6.74752147876504730264363458996, −5.85328222300210070519488775083, −5.17310558415713369929048092176, −4.42482099673736837190899133581, −3.74643680464159872039351646139, −2.94402730205184369088092330067, −1.92180014996785771525210010290, −0.68760031086648837926308031444, 0.68760031086648837926308031444, 1.92180014996785771525210010290, 2.94402730205184369088092330067, 3.74643680464159872039351646139, 4.42482099673736837190899133581, 5.17310558415713369929048092176, 5.85328222300210070519488775083, 6.74752147876504730264363458996, 6.81180626020961832494642353298, 8.058166232474312061011859548834

Graph of the $Z$-function along the critical line