Properties

Label 2-6336-1.1-c1-0-41
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 11-s + 2·13-s + 2·19-s − 9·23-s − 4·25-s + 4·29-s + 5·31-s + 4·35-s + 9·37-s − 2·41-s + 6·43-s + 4·47-s + 9·49-s − 6·53-s + 55-s − 5·59-s + 2·65-s + 13·67-s + 71-s + 14·73-s + 4·77-s − 10·79-s + 14·83-s + 13·89-s + 8·91-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.301·11-s + 0.554·13-s + 0.458·19-s − 1.87·23-s − 4/5·25-s + 0.742·29-s + 0.898·31-s + 0.676·35-s + 1.47·37-s − 0.312·41-s + 0.914·43-s + 0.583·47-s + 9/7·49-s − 0.824·53-s + 0.134·55-s − 0.650·59-s + 0.248·65-s + 1.58·67-s + 0.118·71-s + 1.63·73-s + 0.455·77-s − 1.12·79-s + 1.53·83-s + 1.37·89-s + 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.950446744\)
\(L(\frac12)\) \(\approx\) \(2.950446744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.071377128053344859894122622868, −7.56519678805781130407848167694, −6.44172225692526725575978123475, −5.95276051706536103373758696818, −5.17985594858562856526380380343, −4.40058804882834120573816231371, −3.81710770374657855777982606596, −2.54475665197812259665515911745, −1.81621868705930417076350207872, −0.955095243892024995431714781385, 0.955095243892024995431714781385, 1.81621868705930417076350207872, 2.54475665197812259665515911745, 3.81710770374657855777982606596, 4.40058804882834120573816231371, 5.17985594858562856526380380343, 5.95276051706536103373758696818, 6.44172225692526725575978123475, 7.56519678805781130407848167694, 8.071377128053344859894122622868

Graph of the $Z$-function along the critical line