Properties

Label 2-62400-1.1-c1-0-14
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s + 3·11-s + 13-s − 3·17-s − 3·21-s − 4·23-s + 27-s − 5·29-s − 3·31-s + 3·33-s − 12·37-s + 39-s + 2·41-s + 4·43-s − 3·47-s + 2·49-s − 3·51-s + 9·53-s − 15·59-s + 3·61-s − 3·63-s − 7·67-s − 4·69-s − 8·71-s + 16·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s + 0.904·11-s + 0.277·13-s − 0.727·17-s − 0.654·21-s − 0.834·23-s + 0.192·27-s − 0.928·29-s − 0.538·31-s + 0.522·33-s − 1.97·37-s + 0.160·39-s + 0.312·41-s + 0.609·43-s − 0.437·47-s + 2/7·49-s − 0.420·51-s + 1.23·53-s − 1.95·59-s + 0.384·61-s − 0.377·63-s − 0.855·67-s − 0.481·69-s − 0.949·71-s + 1.87·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.535926744\)
\(L(\frac12)\) \(\approx\) \(1.535926744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.29074662688061, −13.65887206399039, −13.37993903686872, −12.83528864725377, −12.18288209045325, −12.00702102840249, −11.11825046344700, −10.70591645716436, −10.11512342732432, −9.493257153276684, −9.197122405644469, −8.741397271213435, −8.152567437842642, −7.397042262355220, −6.995073782097936, −6.414759329757661, −5.986907594432704, −5.301446672680015, −4.459193482407083, −3.847337462758241, −3.522222641398398, −2.850272729178865, −2.033576969822022, −1.518834280669907, −0.3901048179742146, 0.3901048179742146, 1.518834280669907, 2.033576969822022, 2.850272729178865, 3.522222641398398, 3.847337462758241, 4.459193482407083, 5.301446672680015, 5.986907594432704, 6.414759329757661, 6.995073782097936, 7.397042262355220, 8.152567437842642, 8.741397271213435, 9.197122405644469, 9.493257153276684, 10.11512342732432, 10.70591645716436, 11.11825046344700, 12.00702102840249, 12.18288209045325, 12.83528864725377, 13.37993903686872, 13.65887206399039, 14.29074662688061

Graph of the $Z$-function along the critical line