Properties

Label 62400.el
Number of curves $2$
Conductor $62400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("el1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 62400.el have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 62400.el do not have complex multiplication.

Modular form 62400.2.a.el

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{7} + q^{9} + 3 q^{11} + q^{13} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 62400.el

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.el1 62400dt1 \([0, 1, 0, -583440033, -5424478876737]\) \(-134057911417971280740025/1872\) \(-306708480000\) \([]\) \(6451200\) \(3.1837\) \(\Gamma_0(N)\)-optimal
62400.el2 62400dt2 \([0, 1, 0, -568484833, -5715707857537]\) \(-198417696411528597145/22989483914821632\) \(-2354123152877735116800000000\) \([]\) \(32256000\) \(3.9884\)