Learn more

Refine search


Results (1-50 of 448 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
62400.a1 62400.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 187, -16803]$ \(y^2=x^3-x^2+187x-16803\)
62400.b1 62400.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.302783858$ $[0, -1, 0, 117, -3363]$ \(y^2=x^3-x^2+117x-3363\)
62400.c1 62400.c \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 4667, 2091037]$ \(y^2=x^3-x^2+4667x+2091037\)
62400.d1 62400.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5636833, -5132878463]$ \(y^2=x^3-x^2-5636833x-5132878463\)
62400.d2 62400.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -516833, 2481537]$ \(y^2=x^3-x^2-516833x+2481537\)
62400.e1 62400.e \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.533666037$ $[0, -1, 0, 127, 897]$ \(y^2=x^3-x^2+127x+897\)
62400.f1 62400.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/4\Z$ $11.60740908$ $[0, -1, 0, -832033, 292395937]$ \(y^2=x^3-x^2-832033x+292395937\)
62400.f2 62400.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.725463068$ $[0, -1, 0, -72033, 755937]$ \(y^2=x^3-x^2-72033x+755937\)
62400.f3 62400.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.901852272$ $[0, -1, 0, -52033, 4575937]$ \(y^2=x^3-x^2-52033x+4575937\)
62400.f4 62400.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.901852272$ $[0, -1, 0, -2033, 125937]$ \(y^2=x^3-x^2-2033x+125937\)
62400.g1 62400.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6033, -162063]$ \(y^2=x^3-x^2-6033x-162063\)
62400.g2 62400.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 467, -12563]$ \(y^2=x^3-x^2+467x-12563\)
62400.h1 62400.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.417340153$ $[0, -1, 0, -14556833, -19692938463]$ \(y^2=x^3-x^2-14556833x-19692938463\)
62400.h2 62400.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $10.83468030$ $[0, -1, 0, -14236833, -20671178463]$ \(y^2=x^3-x^2-14236833x-20671178463\)
62400.i1 62400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.006680321$ $[0, -1, 0, -993, 4257]$ \(y^2=x^3-x^2-993x+4257\)
62400.i2 62400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.006680321$ $[0, -1, 0, -793, 8857]$ \(y^2=x^3-x^2-793x+8857\)
62400.j1 62400.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5380833, -4803170463]$ \(y^2=x^3-x^2-5380833x-4803170463\)
62400.j2 62400.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 19167, -22010463]$ \(y^2=x^3-x^2+19167x-22010463\)
62400.k1 62400.k \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1247, 136417]$ \(y^2=x^3-x^2+1247x+136417\)
62400.l1 62400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $10.71733007$ $[0, -1, 0, -30433, -1983263]$ \(y^2=x^3-x^2-30433x-1983263\)
62400.l2 62400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.679332517$ $[0, -1, 0, -4433, 70737]$ \(y^2=x^3-x^2-4433x+70737\)
62400.l3 62400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.679332517$ $[0, -1, 0, -3933, 96237]$ \(y^2=x^3-x^2-3933x+96237\)
62400.l4 62400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.669833129$ $[0, -1, 0, 13567, 484737]$ \(y^2=x^3-x^2+13567x+484737\)
62400.m1 62400.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.306513385$ $[0, -1, 0, -22752033, -41750856063]$ \(y^2=x^3-x^2-22752033x-41750856063\)
62400.m2 62400.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/4\Z$ $1.326628346$ $[0, -1, 0, -11752033, 15191643937]$ \(y^2=x^3-x^2-11752033x+15191643937\)
62400.m3 62400.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.653256692$ $[0, -1, 0, -1627033, -451481063]$ \(y^2=x^3-x^2-1627033x-451481063\)
62400.m4 62400.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.306513385$ $[0, -1, 0, 326092, -51090438]$ \(y^2=x^3-x^2+326092x-51090438\)
62400.n1 62400.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 31167, -17114463]$ \(y^2=x^3-x^2+31167x-17114463\)
62400.o1 62400.o \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.642439379$ $[0, -1, 0, -215233, 38511457]$ \(y^2=x^3-x^2-215233x+38511457\)
62400.o2 62400.o \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.927318139$ $[0, -1, 0, 767, 175777]$ \(y^2=x^3-x^2+767x+175777\)
62400.p1 62400.p \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.202978730$ $[0, -1, 0, -24833, -482463]$ \(y^2=x^3-x^2-24833x-482463\)
62400.p2 62400.p \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.405957461$ $[0, -1, 0, -19833, -1067463]$ \(y^2=x^3-x^2-19833x-1067463\)
62400.q1 62400.q \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.577538713$ $[0, -1, 0, -582273, 157776417]$ \(y^2=x^3-x^2-582273x+157776417\)
62400.q2 62400.q \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.288769356$ $[0, -1, 0, -569473, 165597217]$ \(y^2=x^3-x^2-569473x+165597217\)
62400.r1 62400.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -33183233, 73585358337]$ \(y^2=x^3-x^2-33183233x+73585358337\)
62400.r2 62400.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3743233, -944177663]$ \(y^2=x^3-x^2-3743233x-944177663\)
62400.r3 62400.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -2079233, 1144142337]$ \(y^2=x^3-x^2-2079233x+1144142337\)
62400.r4 62400.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -31233, 44366337]$ \(y^2=x^3-x^2-31233x+44366337\)
62400.s1 62400.s \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 3167, -118463]$ \(y^2=x^3-x^2+3167x-118463\)
62400.t1 62400.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.225110036$ $[0, -1, 0, -165633, 25903137]$ \(y^2=x^3-x^2-165633x+25903137\)
62400.t2 62400.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.450220073$ $[0, -1, 0, -15633, -46863]$ \(y^2=x^3-x^2-15633x-46863\)
62400.t3 62400.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.900440147$ $[0, -1, 0, -11133, -447363]$ \(y^2=x^3-x^2-11133x-447363\)
62400.t4 62400.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.900440147$ $[0, -1, 0, 62367, -436863]$ \(y^2=x^3-x^2+62367x-436863\)
62400.u1 62400.u \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -225473, 41153217]$ \(y^2=x^3-x^2-225473x+41153217\)
62400.u2 62400.u \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -20673, -11583]$ \(y^2=x^3-x^2-20673x-11583\)
62400.v1 62400.v \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.014762148$ $[0, -1, 0, -33, 687]$ \(y^2=x^3-x^2-33x+687\)
62400.w1 62400.w \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.190873464$ $[0, -1, 0, -208, -507338]$ \(y^2=x^3-x^2-208x-507338\)
62400.x1 62400.x \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -10533, -634563]$ \(y^2=x^3-x^2-10533x-634563\)
62400.y1 62400.y \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $14.16831529$ $[0, -1, 0, -122708, -16537338]$ \(y^2=x^3-x^2-122708x-16537338\)
62400.z1 62400.z \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.928218111$ $[0, -1, 0, -6061333, -5839286963]$ \(y^2=x^3-x^2-6061333x-5839286963\)
Next   Download to