Properties

Label 2-62400-1.1-c1-0-114
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·7-s + 9-s + 3·11-s − 13-s + 7·17-s + 8·19-s + 3·21-s + 4·23-s + 27-s + 3·29-s − 11·31-s + 3·33-s − 39-s − 2·41-s + 8·43-s − 9·47-s + 2·49-s + 7·51-s − 9·53-s + 8·57-s + 9·59-s − 61-s + 3·63-s − 5·67-s + 4·69-s − 12·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.13·7-s + 1/3·9-s + 0.904·11-s − 0.277·13-s + 1.69·17-s + 1.83·19-s + 0.654·21-s + 0.834·23-s + 0.192·27-s + 0.557·29-s − 1.97·31-s + 0.522·33-s − 0.160·39-s − 0.312·41-s + 1.21·43-s − 1.31·47-s + 2/7·49-s + 0.980·51-s − 1.23·53-s + 1.05·57-s + 1.17·59-s − 0.128·61-s + 0.377·63-s − 0.610·67-s + 0.481·69-s − 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.262224479\)
\(L(\frac12)\) \(\approx\) \(5.262224479\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40219965579096, −13.97742630951008, −13.35227450456131, −12.71749101814986, −12.23442519738259, −11.67035722653115, −11.37969116984314, −10.76952029110886, −9.986795286297733, −9.730294286031976, −8.986210533311230, −8.786119896548591, −7.855238179246588, −7.582006326794913, −7.272978052989554, −6.435168754592060, −5.684960874680603, −5.158271208450149, −4.776853586058349, −3.922848095550217, −3.331495492583664, −2.964256258781803, −1.879140394979888, −1.404568737398945, −0.8256622566659866, 0.8256622566659866, 1.404568737398945, 1.879140394979888, 2.964256258781803, 3.331495492583664, 3.922848095550217, 4.776853586058349, 5.158271208450149, 5.684960874680603, 6.435168754592060, 7.272978052989554, 7.582006326794913, 7.855238179246588, 8.786119896548591, 8.986210533311230, 9.730294286031976, 9.986795286297733, 10.76952029110886, 11.37969116984314, 11.67035722653115, 12.23442519738259, 12.71749101814986, 13.35227450456131, 13.97742630951008, 14.40219965579096

Graph of the $Z$-function along the critical line