Properties

Label 2-6210-1.1-c1-0-119
Degree $2$
Conductor $6210$
Sign $1$
Analytic cond. $49.5870$
Root an. cond. $7.04181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 3·7-s − 8-s + 10-s − 4·11-s − 5·13-s + 3·14-s + 16-s − 3·17-s − 5·19-s − 20-s + 4·22-s + 23-s + 25-s + 5·26-s − 3·28-s − 10·29-s + 6·31-s − 32-s + 3·34-s + 3·35-s − 2·37-s + 5·38-s + 40-s − 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.13·7-s − 0.353·8-s + 0.316·10-s − 1.20·11-s − 1.38·13-s + 0.801·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.223·20-s + 0.852·22-s + 0.208·23-s + 1/5·25-s + 0.980·26-s − 0.566·28-s − 1.85·29-s + 1.07·31-s − 0.176·32-s + 0.514·34-s + 0.507·35-s − 0.328·37-s + 0.811·38-s + 0.158·40-s − 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6210\)    =    \(2 \cdot 3^{3} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(49.5870\)
Root analytic conductor: \(7.04181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 6210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.28282592620561521123593300726, −6.89915648435617772955562152789, −6.10835906950105789651198318344, −5.21020851711495748848795195399, −4.45867555484977030715795233337, −3.39303505922438412660104912747, −2.69112874409830102945728206957, −1.92228960395016464019532704735, 0, 0, 1.92228960395016464019532704735, 2.69112874409830102945728206957, 3.39303505922438412660104912747, 4.45867555484977030715795233337, 5.21020851711495748848795195399, 6.10835906950105789651198318344, 6.89915648435617772955562152789, 7.28282592620561521123593300726

Graph of the $Z$-function along the critical line