| L(s)  = 1 | − 5-s                         + 6·17-s     − 4·19-s             + 25-s         + 2·29-s                 + 2·37-s         − 2·41-s     − 4·43-s         + 4·47-s     − 7·49-s         + 10·53-s             + 8·59-s     − 2·61-s             + 4·67-s         − 12·71-s     + 6·73-s                     − 16·83-s     − 6·85-s         − 10·89-s             + 4·95-s     − 2·97-s         + 101-s     + 103-s         + 107-s     + 109-s         + 113-s                + ⋯ | 
| L(s)  = 1 | − 0.447·5-s                         + 1.45·17-s     − 0.917·19-s             + 1/5·25-s         + 0.371·29-s                 + 0.328·37-s         − 0.312·41-s     − 0.609·43-s         + 0.583·47-s     − 49-s         + 1.37·53-s             + 1.04·59-s     − 0.256·61-s             + 0.488·67-s         − 1.42·71-s     + 0.702·73-s                     − 1.75·83-s     − 0.650·85-s         − 1.05·89-s             + 0.410·95-s     − 0.203·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s     + 0.0957·109-s         + 0.0940·113-s                + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 13 | \( 1 \) |  | 
| good | 7 | \( 1 + p T^{2} \) | 1.7.a | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae | 
|  | 53 | \( 1 - 10 T + p T^{2} \) | 1.53.ak | 
|  | 59 | \( 1 - 8 T + p T^{2} \) | 1.59.ai | 
|  | 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c | 
|  | 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae | 
|  | 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m | 
|  | 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag | 
|  | 79 | \( 1 + p T^{2} \) | 1.79.a | 
|  | 83 | \( 1 + 16 T + p T^{2} \) | 1.83.q | 
|  | 89 | \( 1 + 10 T + p T^{2} \) | 1.89.k | 
|  | 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.62653301522286, −14.13069571574099, −13.51851560717663, −12.98600004425497, −12.48868052295855, −12.05276296482323, −11.54044367732055, −11.06968900957357, −10.36315149274344, −10.05362229402391, −9.513388448904866, −8.695224999738117, −8.414237516919908, −7.828819709240526, −7.276443369981650, −6.754477748442332, −6.121691110719434, −5.515535215177466, −5.014961039267487, −4.237643016474681, −3.822313632434255, −3.093905360495723, −2.536049927611069, −1.636274357960329, −0.9318376170380364, 0, 
0.9318376170380364, 1.636274357960329, 2.536049927611069, 3.093905360495723, 3.822313632434255, 4.237643016474681, 5.014961039267487, 5.515535215177466, 6.121691110719434, 6.754477748442332, 7.276443369981650, 7.828819709240526, 8.414237516919908, 8.695224999738117, 9.513388448904866, 10.05362229402391, 10.36315149274344, 11.06968900957357, 11.54044367732055, 12.05276296482323, 12.48868052295855, 12.98600004425497, 13.51851560717663, 14.13069571574099, 14.62653301522286
