L(s) = 1 | + 2·3-s + 5-s − 2·7-s + 9-s − 6·13-s + 2·15-s + 2·17-s − 19-s − 4·21-s + 2·23-s + 25-s − 4·27-s + 2·29-s − 4·31-s − 2·35-s + 10·37-s − 12·39-s − 10·41-s + 6·43-s + 45-s + 6·47-s − 3·49-s + 4·51-s − 6·53-s − 2·57-s − 4·59-s − 2·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.66·13-s + 0.516·15-s + 0.485·17-s − 0.229·19-s − 0.872·21-s + 0.417·23-s + 1/5·25-s − 0.769·27-s + 0.371·29-s − 0.718·31-s − 0.338·35-s + 1.64·37-s − 1.92·39-s − 1.56·41-s + 0.914·43-s + 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.560·51-s − 0.824·53-s − 0.264·57-s − 0.520·59-s − 0.256·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 2 T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 - 2 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 10 T + p T^{2} \) |
| 41 | \( 1 + 10 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 2 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.65919107683087884298823480657, −7.23436546772269163480377177671, −6.35527884347965566169530376205, −5.59465419717945855450175289517, −4.76015239441290460184897269324, −3.89511864614255116875710510304, −2.84733050783303684181265239875, −2.69748101374550081075014095448, −1.57830391607595602459925925121, 0,
1.57830391607595602459925925121, 2.69748101374550081075014095448, 2.84733050783303684181265239875, 3.89511864614255116875710510304, 4.76015239441290460184897269324, 5.59465419717945855450175289517, 6.35527884347965566169530376205, 7.23436546772269163480377177671, 7.65919107683087884298823480657