L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s − 5·11-s + 12-s − 4·13-s + 15-s + 16-s + 2·17-s − 18-s + 19-s + 20-s + 5·22-s + 6·23-s − 24-s − 4·25-s + 4·26-s + 27-s − 3·29-s − 30-s − 31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s − 1.10·13-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s + 1.06·22-s + 1.25·23-s − 0.204·24-s − 4/5·25-s + 0.784·26-s + 0.192·27-s − 0.557·29-s − 0.182·30-s − 0.179·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 - T \) | |
| 7 | \( 1 \) | |
| 19 | \( 1 - T \) | |
good | 5 | \( 1 - T + p T^{2} \) | 1.5.ab |
| 11 | \( 1 + 5 T + p T^{2} \) | 1.11.f |
| 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac |
| 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag |
| 29 | \( 1 + 3 T + p T^{2} \) | 1.29.d |
| 31 | \( 1 + T + p T^{2} \) | 1.31.b |
| 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag |
| 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e |
| 47 | \( 1 + 6 T + p T^{2} \) | 1.47.g |
| 53 | \( 1 + 3 T + p T^{2} \) | 1.53.d |
| 59 | \( 1 - 9 T + p T^{2} \) | 1.59.aj |
| 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak |
| 67 | \( 1 - 10 T + p T^{2} \) | 1.67.ak |
| 71 | \( 1 + 16 T + p T^{2} \) | 1.71.q |
| 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g |
| 79 | \( 1 - 7 T + p T^{2} \) | 1.79.ah |
| 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j |
| 89 | \( 1 + 8 T + p T^{2} \) | 1.89.i |
| 97 | \( 1 + 3 T + p T^{2} \) | 1.97.d |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.79015700639667322792134246827, −7.37791885305043902317821665744, −6.58811005549334367086038714406, −5.48367491928631192451652425155, −5.13726699642941105486764228205, −3.96060318185008072179333112600, −2.77532497098322615057980579425, −2.51726041601782784658133884752, −1.37771051036440072925064937041, 0,
1.37771051036440072925064937041, 2.51726041601782784658133884752, 2.77532497098322615057980579425, 3.96060318185008072179333112600, 5.13726699642941105486764228205, 5.48367491928631192451652425155, 6.58811005549334367086038714406, 7.37791885305043902317821665744, 7.79015700639667322792134246827