Properties

Label 2-55506-1.1-c1-0-29
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 3·5-s + 6-s − 7-s + 8-s + 9-s − 3·10-s + 11-s + 12-s + 13-s − 14-s − 3·15-s + 16-s + 4·17-s + 18-s + 19-s − 3·20-s − 21-s + 22-s + 24-s + 4·25-s + 26-s + 27-s − 28-s − 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.301·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s − 0.774·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.229·19-s − 0.670·20-s − 0.218·21-s + 0.213·22-s + 0.204·24-s + 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 - T \)
29 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69260010016461, −14.31962635420687, −13.50925493684890, −13.22880187284354, −12.66405641071413, −12.04870532820695, −11.72529557172215, −11.35004329361566, −10.62034000775054, −9.963054950079429, −9.669406486298889, −8.741610010030567, −8.256831669829274, −7.979970089918204, −7.118266737454077, −6.969565690239665, −6.218128420693969, −5.472180884834394, −4.897702193515929, −4.250151014566061, −3.574736490019379, −3.437874122565307, −2.762972527940284, −1.811702344639149, −1.051070306651808, 0, 1.051070306651808, 1.811702344639149, 2.762972527940284, 3.437874122565307, 3.574736490019379, 4.250151014566061, 4.897702193515929, 5.472180884834394, 6.218128420693969, 6.969565690239665, 7.118266737454077, 7.979970089918204, 8.256831669829274, 8.741610010030567, 9.669406486298889, 9.963054950079429, 10.62034000775054, 11.35004329361566, 11.72529557172215, 12.04870532820695, 12.66405641071413, 13.22880187284354, 13.50925493684890, 14.31962635420687, 14.69260010016461

Graph of the $Z$-function along the critical line