Properties

Label 2-55506-1.1-c1-0-10
Degree $2$
Conductor $55506$
Sign $1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 3·7-s + 8-s + 9-s − 11-s − 12-s − 2·13-s + 3·14-s + 16-s − 3·17-s + 18-s − 2·19-s − 3·21-s − 22-s + 7·23-s − 24-s − 5·25-s − 2·26-s − 27-s + 3·28-s + 9·31-s + 32-s + 33-s − 3·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.13·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s − 0.554·13-s + 0.801·14-s + 1/4·16-s − 0.727·17-s + 0.235·18-s − 0.458·19-s − 0.654·21-s − 0.213·22-s + 1.45·23-s − 0.204·24-s − 25-s − 0.392·26-s − 0.192·27-s + 0.566·28-s + 1.61·31-s + 0.176·32-s + 0.174·33-s − 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.683457190\)
\(L(\frac12)\) \(\approx\) \(3.683457190\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53015234829960, −13.65604738517127, −13.52678570569508, −12.91714457185551, −12.25527940890326, −11.93039322684828, −11.25332853693808, −11.10133905683558, −10.48409848137499, −9.909784075805277, −9.302696490952916, −8.533960374934098, −8.053115845669896, −7.531024014591232, −6.888590107925235, −6.445747978298391, −5.761337672295273, −5.161818545989379, −4.769655910794908, −4.307790577686629, −3.659846019704098, −2.581169213996608, −2.322634165704389, −1.381747108882604, −0.6304704869910557, 0.6304704869910557, 1.381747108882604, 2.322634165704389, 2.581169213996608, 3.659846019704098, 4.307790577686629, 4.769655910794908, 5.161818545989379, 5.761337672295273, 6.445747978298391, 6.888590107925235, 7.531024014591232, 8.053115845669896, 8.533960374934098, 9.302696490952916, 9.909784075805277, 10.48409848137499, 11.10133905683558, 11.25332853693808, 11.93039322684828, 12.25527940890326, 12.91714457185551, 13.52678570569508, 13.65604738517127, 14.53015234829960

Graph of the $Z$-function along the critical line