Properties

Label 2-552e2-1.1-c1-0-128
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·11-s + 2·13-s + 2·17-s − 4·19-s − 25-s + 6·29-s + 8·31-s + 6·37-s + 6·41-s + 4·43-s − 7·49-s + 2·53-s − 8·55-s + 4·59-s − 2·61-s + 4·65-s − 4·67-s − 8·71-s + 10·73-s + 8·79-s + 4·83-s + 4·85-s − 6·89-s − 8·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.20·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s − 1/5·25-s + 1.11·29-s + 1.43·31-s + 0.986·37-s + 0.937·41-s + 0.609·43-s − 49-s + 0.274·53-s − 1.07·55-s + 0.520·59-s − 0.256·61-s + 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s + 0.900·79-s + 0.439·83-s + 0.433·85-s − 0.635·89-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82858360343024, −12.61620170989639, −12.05463624237779, −11.49727782589716, −10.89061016001097, −10.67671837370493, −10.04758243245368, −9.849562740803928, −9.329717747399086, −8.676879290223575, −8.278219959995740, −7.880281036094166, −7.426596467499857, −6.638195070647820, −6.262406695694476, −5.934254023288147, −5.377862754965742, −4.854359922680246, −4.376931202754515, −3.808031874727769, −3.026618464772507, −2.541026523316580, −2.261172818469708, −1.371989622560568, −0.8881185736399002, 0, 0.8881185736399002, 1.371989622560568, 2.261172818469708, 2.541026523316580, 3.026618464772507, 3.808031874727769, 4.376931202754515, 4.854359922680246, 5.377862754965742, 5.934254023288147, 6.262406695694476, 6.638195070647820, 7.426596467499857, 7.880281036094166, 8.278219959995740, 8.676879290223575, 9.329717747399086, 9.849562740803928, 10.04758243245368, 10.67671837370493, 10.89061016001097, 11.49727782589716, 12.05463624237779, 12.61620170989639, 12.82858360343024

Graph of the $Z$-function along the critical line