Properties

Label 2-552e2-1.1-c1-0-119
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 4·11-s − 13-s + 2·17-s + 2·19-s − 4·25-s + 5·29-s − 6·31-s + 2·35-s + 10·37-s + 9·41-s − 10·43-s + 12·47-s − 3·49-s + 5·53-s − 4·55-s + 6·59-s − 61-s − 65-s − 8·67-s + 6·71-s − 9·73-s − 8·77-s + 12·79-s − 10·83-s + 2·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 1.20·11-s − 0.277·13-s + 0.485·17-s + 0.458·19-s − 4/5·25-s + 0.928·29-s − 1.07·31-s + 0.338·35-s + 1.64·37-s + 1.40·41-s − 1.52·43-s + 1.75·47-s − 3/7·49-s + 0.686·53-s − 0.539·55-s + 0.781·59-s − 0.128·61-s − 0.124·65-s − 0.977·67-s + 0.712·71-s − 1.05·73-s − 0.911·77-s + 1.35·79-s − 1.09·83-s + 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95906312504888, −12.42730669242248, −11.98204782343039, −11.56035811421323, −10.93785030515702, −10.73177194877033, −10.12609052548628, −9.677081403441258, −9.414035161964470, −8.644179820124589, −8.235751136030101, −7.802217923465821, −7.408059461115745, −6.980648302101064, −6.181243817963887, −5.718699786806905, −5.405225249114433, −4.912718537241781, −4.323138849178864, −3.874976660911648, −3.030930882731259, −2.607802001475915, −2.140144877766056, −1.439387263543079, −0.8445715538047130, 0, 0.8445715538047130, 1.439387263543079, 2.140144877766056, 2.607802001475915, 3.030930882731259, 3.874976660911648, 4.323138849178864, 4.912718537241781, 5.405225249114433, 5.718699786806905, 6.181243817963887, 6.980648302101064, 7.408059461115745, 7.802217923465821, 8.235751136030101, 8.644179820124589, 9.414035161964470, 9.677081403441258, 10.12609052548628, 10.73177194877033, 10.93785030515702, 11.56035811421323, 11.98204782343039, 12.42730669242248, 12.95906312504888

Graph of the $Z$-function along the critical line