Properties

Label 2-54450-1.1-c1-0-112
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 3·13-s + 16-s − 2·17-s + 19-s − 6·23-s − 3·26-s − 8·29-s + 9·31-s − 32-s + 2·34-s + 3·37-s − 38-s − 2·41-s + 5·43-s + 6·46-s − 2·47-s − 7·49-s + 3·52-s + 2·53-s + 8·58-s − 10·59-s − 7·61-s − 9·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.832·13-s + 1/4·16-s − 0.485·17-s + 0.229·19-s − 1.25·23-s − 0.588·26-s − 1.48·29-s + 1.61·31-s − 0.176·32-s + 0.342·34-s + 0.493·37-s − 0.162·38-s − 0.312·41-s + 0.762·43-s + 0.884·46-s − 0.291·47-s − 49-s + 0.416·52-s + 0.274·53-s + 1.05·58-s − 1.30·59-s − 0.896·61-s − 1.14·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.82438874791196, −14.03727241180251, −13.75956575046867, −13.16175433172539, −12.56872440495358, −12.06260844535283, −11.40673057667309, −11.16954104878855, −10.51586961551427, −10.01448080760977, −9.472795829933312, −9.029770644181933, −8.418108036773763, −7.875348812311045, −7.579754232980632, −6.697015502165406, −6.254619092393046, −5.854463095318119, −5.038328816189216, −4.348205395548159, −3.716797992424662, −3.091496120467322, −2.277078441054384, −1.700392220342775, −0.8987622880127309, 0, 0.8987622880127309, 1.700392220342775, 2.277078441054384, 3.091496120467322, 3.716797992424662, 4.348205395548159, 5.038328816189216, 5.854463095318119, 6.254619092393046, 6.697015502165406, 7.579754232980632, 7.875348812311045, 8.418108036773763, 9.029770644181933, 9.472795829933312, 10.01448080760977, 10.51586961551427, 11.16954104878855, 11.40673057667309, 12.06260844535283, 12.56872440495358, 13.16175433172539, 13.75956575046867, 14.03727241180251, 14.82438874791196

Graph of the $Z$-function along the critical line